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Abstract

Purpose of Review Over the last decade, microbiome studies have enhanced our knowledge and understanding of the
polymicrobial nature of oral infections. Recently, profiling of the fungal microbiome has expanded our conventional understand-
ing of oral ecology, revealing the critical importance of yeasts within this complex microbiome. This review aims to explore our
current appreciation of interkingdom interactions in oral disease.

Recent Findings There is a growing evidence base of interactions and pathogenic synergy and antagonism with bacterial species
within oral disease. Recent studies have helped to develop our knowledge of how Candida albicans, alongside bacteria such as
Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Lactobacillus species,
influence overall pathogenicity.

Summary Clinical and experimental evidence makes a compelling case for a role for C. albicans in a number of oral infections,
though whether its role is an active accomplice or passive bystander remains to be determined.

Keywords Candida - Biofilm - Oral cavity - Polymicrobial - Interkingdom

Introduction from all these studies is the importance of pathogenic fungi

expressed in terms of the mycobiome, and how these eukary-
The oral ecosystem is a critical element in oral health, with ~ otes impact the progression of various oral diseases. Indeed,
dysbiosis perceived as the primary driver of disease pheno-  fungi are often neglected in oral microbiology due to their
types [1]. Recent studies have shown that ecobiological het-  relative low quantitative contribution within diseased sites of
erogeneity of the salivary ecosystem, its functionality, and its ~ the oral cavity. Nevertheless, consideration of their size may
interaction with host-related biochemical salivary parameters  lead to a rethink, as conservative estimates for a yeast cell bio-
are also important considerations in understanding disease ~ volume is approximately 70 wm®, whereas a bacterium is
processes in the oral cavity [2¢¢]. However, a notable omission 0.5 um® [3]. This almost 150-fold difference in the occupancy
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of available space upon orally relevant surfaces for fungi sug-
gests that it is at least a bystander, but whether innocent or not
remains to be determined.

The oral cavity contains numerous different micro-environ-
ments, ranging from enamel, mucosa, periodontal pockets,
acrylic and metal substrates, and dentine, that are inhabited
by tens to hundreds of bacterial species [4]. Polymicrobial
communities are able to form biofilms upon this vast variety
of substrates [See, 6, 7]. It is now generally well understood
that dental plaque biofilms contain many resident species that
modulate one another, their environment, and also the host
response [8—10]. Despite the widely acknowledged presence
of yeasts within the oral cavity, their active role and participa-
tion in oral diseases is generally perceived to be restricted to
mucosal-related diseases. Yet, in excess of 100 fungal species
have been reported to colonise the oral cavity and co-exist
within complex biofilm populations within aggregates along-
side resident bacterial microbiomes [11]. The emergence of
these datasets has been the catalyst for a number of studies
investigating the importance of fungi within oral biofilm in-
fections. This has fuelled the concept of interkingdom com-
munities, which continues to grow above and beyond our
traditional viewpoint of bacterial-bacterial interactions
[12—14]. Indeed, the advancement in sequencing technologies
has facilitated the characterisation of the fungal oral
microbiome [11, 15, 16]. Within this review, the current ev-
idence regarding fungal-bacterial interactions in the oral cav-
ity and their clinical relevance will be evaluated, which are
illustrated in Fig. 1.

Identifying the Usual Suspects and Beyond

The oral cavity contains one of the most diverse microbiomes
of the human body, second only to that of the gastrointestinal
tract [17]. The oral microbiome plays host to hundreds of
eukaryotic and prokaryotic species. It is estimated that more
than 600 species of bacteria [18] and 100 fungal species [16]
can inhabit this “biome.” Sequencing of “hypervariable” re-
gions, such as the 16S rRNA (v1-9), for identifying genera of
bacteria within communities has become commonplace with-
in oral microbiology [19, 20]. Within recent years, there has
been a number of studies concerned with the compositional
makeup of the oral microbiome, which varies dramatically
between health and various diseases, as well as distinct eco-
logical niches [4, 21, 22¢]. The heterogeneity and diversity
between niches observed within the oral microbiome is in part
due to the numerous surfaces that exist within the oral cavity
[4]. Microbiome studies in oral disease have demonstrated the
existence of distinct microbial communities compared to
health. In periodontitis microbiome studies, in contrast to oth-
er clinical host sites (e.g. gastrointestinal tract), an increased
bacterial diversity and richness in disease has been reported
compared to health [23, 24]. Additionally, these studies have

elucidated previously unappreciated species. Next-generation
sequencing (NGS) technologies have revealed a greater com-
plexity within the periodontal disease microbiome, well be-
yond the traditional “red complex” that is comprised of
Tannerella forsythia, Porphyromonas gingivalis, and
Treponema denticola [25]. Microbiome studies have shifted
this dogma, showing the prevalence of many disease-
associated genera and species, including but not limited to
Spirochetes, Filifactor, and Fusobacterium, highlighting a
more diverse disease community than previously considered
[19, 26].

In contrast, limited oral fungal microbiome, or
“mycobiome,” studies have been published and disseminated,
despite their increased recognition as an important pathogen in
oral disease. As recently as 2010, a study led the way in
characterising the fungal component of the oral microbiota
via amplification of the internal transcribed spacer (ITS).
Unlike 16S sequences with fixed length amplicons, ITS se-
quences can produce variable sequence lengths, which make
bioinformatic processing more challenging. The authors ob-
served that the most common genera of fungi were
Cladosporium, Aureobasidium, and Saccharomycetales [16],
many of which were subsequently confirmed by Dupuy and
colleagues [27]. Interestingly, amongst the observed opera-
tional taxonomic units (OTUs) were a number of genera that
were not in consensus with the initial study, including
Saccharomyces and a number of components, including the
Saccharomycetales order that were not found in as high fre-
quency as reported initially [16].

In more recent studies, comparisons between oral health
and disease have been made. For instance, a study comparing
the mycobiome of periodontal disease and healthy individuals
reported similar levels of fungal species (over 100) compared
to the first report [16]. However, in their cohort, it was ob-
served that Candida and Aspergillus were the most frequent
genera, being present in 100% of samples. Interestingly, there
was no significant difference in the overall diversity of fungal
taxa between periodontal disease and the healthy cohort, or
the overall composition. An increase in abundance the
Candida genus in periodontal disease compared to health
was observed, although this was not found to be statistically
significant [11]. Notably, this was a pilot study and was per-
haps hampered by its limited cohort size. Future mycobiome
studies with larger cohorts and more stringent classification of
disease state and other metadata would provide a more com-
prehensive interpretation of the mycobiome in oral health.

With 16S now being well established, and ITS amplicon
sequencing becoming more readily available, there is now the
ability to perform co-occurrence studies [12, 15¢]. Dual bac-
terium and mycobiome analysis of sites within oral cavity
(endodontic) infections has been demonstrated by Persoon
and colleagues (2017). This group demonstrated a co-
occurrence of acidogenic bacteria in the presence of fungal
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Fig. 1 Bi-directional interactions between fungal and bacterial species in
oral infections. The diagram illustrates the sites of polymicrobial
infection. a Periodontal pockets. b Caries. ¢ Angular cheilitis. d

species, and an overall positive correlation of C. albicans with
bacterial species. Negative correlations of bacterial species
were observed with increased C. dubliniensis. These authors
highlight the current limitations of these approaches, includ-
ing increased difficulty in DNA extraction, PCR amplification
due to length variation of ITS, and inconsistent fungal nomen-
clature. Despite these issues, as these types of studies grow
and analytical pipelines become more developed, then the
possibilities for understanding complex interkingdom interac-
tions will become more fully realised.

Periodontal Disease: An Uncontrolled Gangland

Periodontal disease is a disease or group of discases
characterised by a complex host inflammatory response that
is stimulated by microbial interactions from complex
polymicrobial biofilm plaque. This subsequently leads to
damage to the surrounding gingival tissues and supporting
structures of the tooth. It varies in severity from reversible
gingivitis to severe irreversible periodontitis, where the
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periodontal ligaments and alveolar bone are destroyed [28].
Despite our ability to easily prevent this disease with oral
hygiene measures, it remains one of the most prevalent dis-
eases in the world, with nearly half of adults in the USA
developing periodontitis [29]. Periodontal disease has a
well-understood bacterial actiology, with P. gingivalis consid-
ered the keystone pathogen within periodontitis [30] (Fig. 1a).
Several other bacteria have also been implicated, including
but not limited to Tannerella forsythia, Aggregatibacter
actinomycetemcomitans, and Fusobacterium nucleatum [31,
32]. Given the diversity and numbers of other bacteria in and
around the periodontal neighbourhood, then it is difficult to
say with absolute certainty that particular periodontal
pathogens are the sole cause of periodontitis. Indeed,
the concept of oral ecotypes and pathotypes suggests
that the sum of different varieties of periodontal patho-
gens and their functional capacity within the periodontal
environment, despite functionally redundant metabolic
processes, are more likely to drive synergised virulence
leading to clinical disease [2°°].
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Several fungal species have been isolated from the peri-
odontal pockets of patients with periodontitis, with Candida
albicans generally being the most prevalent [33, 34]. Notably,
the presence of C. albicans has also correlated with the sever-
ity of periodontitis [33]. Whether it is simply innocently
colonising this environment and playing no active pathogenic
role is unknown, yet mounting evidence suggests that it has
the capacity to interact with periodontal pathogens and influ-
ence their behaviours. Specific bacteria frequently co-isolated
with C. albicans in periodontal pockets include the anaerobes
F nucleatum and P, gingivalis. Remarkably, it has been shown
that fungi are able to rapidly deplete oxygen within mixed
species environments, which may explain why obligate anaer-
obes and yeasts are observed together [35]. For instance, P,
gingivalis modulates and enhances the germ tube formation of
C. albicans [36), whereas F. nucleatum has been demonstrated
to inhibit C. albicans hyphal morphogenesis [37]. Other P,
gingivalis-related studies however noted an antagonistic effect
on the yeast-hyphal transition in C. albicans, with P. gingivalis
notably downregulating hyphal related genes ALS3, HWPI,
and SAP4 [38, 39]. Most recently, it has been demonstrated
that the attachment of P, gingivalis to C. albicans is facilitated
by the virulence factor InlJ from the internalin protein
family, which interacts with the C. albicans adhesin
ALS3 [40]. Additionally, co-adhesion specific interac-
tions were observed, where adhesive interactions be-
tween these pathogens appear to induce the type 9 se-
cretion system of P. gingivalis, a system characterised as
having an increased community pathogenicity [41].

Further studies have shown that enhanced invasion of a
gingival epithelial cell line and gingival fibroblasts by P.
gingivalis is enhanced by pre-incubation with heat-killed cells
and the mannoprotein-3-glucan complex from C. albicans
[42]. The mechanism by which C. albicans facilitates this
invasion is unclear, though the authors hypothesise that the
recruitment of C. albicans cell wall components increases the
recruitment of clathrin in epithelial cells. This is a mechanism
by which P. gingivalis has been shown to invade host cells
[14]. Further physical interactions have been investigated with
F nucleatum. This contact-dependent interaction is mediated
by the FLO9 C. albicans cell wall protein and the RadD F.
nucleatum membrane protein, which prohibits the morpholog-
ical switching from yeast to hyphae [37]. Only recently has
this interaction of FLO9 and RadD have been shown to be
necessary for co-aggregation of F. nucleatum and C. albicans
under both planktonic and biofilm conditions [43]. It has ad-
ditionally been shown that this co-aggregation with F.
nucleatum has a modulatory effect on the innate immune re-
sponse. MCP-1 and TNF-« production are reduced during co-
aggregation, which Bor et al. (2016) conclude has the poten-
tial to provide a mutualistic protection from macrophage kill-
ing and recruitment of monocytes resulting in an increased
persistence [37].

Finally, A. actinomycetemcomitans has been associated with
severe periodontitis [44]. In vitro, A. actinomycetemcomitans
adheres to hyphae, although interactions with C. albicans show
decreased fungal biofilm formation which is mediated by the
luxS-synthesised autoinducer-2 (Al-2)-dependent mechanism.
This was also mirrored using the 4,5-dihydroxy-2,3-
pentanedione (DPD) synthetic molecule [45]. In Streptococcus
gordonii, a ubiquitous oral commensal, it was shown that C.
albicans hyphal formation was induced in a luxS-dependent
manner, and that the addition of DPD had no effect on hyphal
formation [13]. It is evident, as the authors concede, that more
studies are necessary to elucidate the interactions between C.
albicans and A. actinomycetemcomitans.

There is still many unknowns and conflicting evidence
within the literature with regard to the importance of
interkingdom relationships and their involvement in the pro-
gression of periodontitis. The literature does highlight some
potentially important synergised pathogenicities of both the
fungal and bacterial species, though further clinical studies
are required to demonstrate functional dependency, perhaps
starting with showing active presence of hyphae within peri-
odontal pockets of patients with active disease.

Caries: Slimy Residents

Impacting 2.43 billion people globally, dental caries is the
second most prevalent disease of humans, exceeded only by
the common cold [46, 47]. Dental plaque biofilms are respon-
sible for this cause of tooth decay, predominantly through the
biofilms ability to ferment dietary sugars such as sucrose into
the production of intolerable quantities of lactic acid that ulti-
mately results in the demineralisation of the tooth surface. If
left untreated, the dissolution of the enamel and dentine within
the tooth results in the formation of a cavity within the tooth,
providing an ideal niche for the cariogenic biofilm to thrive
and proliferate to progress disease [48]. Moreover, a conse-
quence of sugar metabolism is the production of soluble and
insoluble glucan “slime” that protects and encases the
acidogenic microbiome.

Historically, Streptococcus mutans has been regarded as
the primary etiological agent of this disease; however, recent
microbiome studies of dental plaque have highlighted that
caries may indeed be polymicrobial in nature [49, 50] (Fig.
1b). An organism of interest in this context is C. albicans, a
yeast frequently isolated from patients with caries. Studies
have identified a higher incidence rate of C. albicans in chil-
dren with caries compared to caries-free children [S1, 52]. A
recent systematic review by Xiao and co-workers (2018) in-
deed confirmed this co-isolation, stating that children with
oral C. albicans colonisation, can be > 5 times more likely
to develop early childhood caries (ECC) [53¢]. The role for
C. albicans colonisation as a risk factor for ECC should not be
under-estimated and warrants further investigation.
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Collectively, do these findings suggest incorporating antifun-
gal therapy in the treatment of ECC? [54].

Mechanistically, there have been several interesting obser-
vations, with both physical and chemically mediated signals
facilitating these interactions. Perhaps the most well-
documented candidal adhesin with regard to interkingdom
interactions is ALS3. Genetic manipulation of this adhesin
has been shown to reduce bacterial binding to hyphal fila-
ments of C. albicans, reducing the invasive capacity of this
relationship [55]. The role of this phenotype has been shown
in several bacterial pathogens including Staphylococcus
aureus, Streptococcus gordonii, and Streptococcus agalactiae
[56-58]. Interestingly, when the Aals3 strain was grown with
S. mutans, no reduction was observed in mixed species bio-
film formation, suggestive of a different mechanism of inter-
action [59]. However, it has been shown that the presence of S.
mutans in a mixed species biofilm can induce transcriptional
expression of this key adhesin [60]. Instead of a protein-based
interaction, Hwang and colleagues (2017) demonstrated a
mannan-mediated binding, whereby the extracellular o-
glucans of S. mutans interacted with a high affinity to the
mannans of the C. albicans cell wall. Furthermore, they iden-
tified that mixed species biofilms formed with C. albicans
strains defective in the outer mannan chain were unable to
establish in vivo [59]. The exoenzyme glucosyltransferases
(Gtfs) are predominantly responsible for the production of
«-glucans from dietary sugar, and it is known that these ex-
tracellular polysaccharides are the key mediators of these
dual-species cariogenic biofilms. In the absence of sucrose,
C. albicans demonstrates a weak co-aggregation with S.
mutans;, however, secreted Gtfs from S. mutans establishes a
co-aggregation between these two organisms, binding with
high affinity [61, 62]. The increased ECM biovolume within
the dual-species biofilm actively contributes to the pathoge-
nicity of disease, with increased levels of infection and carious
lesions observed in vivo [60].

Another molecule worthy of consideration within the con-
text of this interaction is the quorum sensing compound
farnesol. This molecule is a key regulator of C. albicans bio-
film formation [63], and has also been shown to augment
antimicrobial therapy and decrease bacterial biofilm formation
[64, 65]. These effects are also observed with S. mutans, with
high concentrations of the compound inhibiting biofilm for-
mation [66, 67]. Yet, interestingly, when at lower concentra-
tions (25-50 uM) that are representative within these dual-
species biofilms, then it can stimulate S. mutans microcolony
development and enhance biofilm formation [67]. It is there-
fore thought that this is a key maintenance molecule with
regard to regulating microbial fitness and biofilm formation
in oral plaque [68]. If indeed candidal yeasts are important
physical and metabolic members of cariogenic microbiomes,
then this may explain why S. mutans centric therapeutic ap-
proaches have failed. Taking a holistic microbiological view
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of this slimy caries environment may lead to combined bacte-
rial and fungal therapeutic approaches.

Angular Cheilitis: Partners in Crime or Peer Pressure?

Angular cheilitis is a disease characterised by inflammation
and crusting of one or more commonly both corners of the
mouth [69]. It is a condition of a multifaceted aetiology, in-
cluding poorly fitted dental appliances, minor trauma, and
allergens that account for between 0.7 and 3.8% of oral mu-
cosal lesions in the adult population [70]. Despite being
recognised as a natural inhabitant of the oral microbiome,
the role for Staphylococcus aureus in oral disease is underap-
preciated, though it is commonly isolated in angular cheilitis
and associated mucositis (Fig. 1c). Whether it is simply an
innocent bystander or actively contributes to pathogenesis is
understudied, yet a growing body of evidence yields to the
latter [71-74]. A retrospective 10-year analysis by
McCormack and co-workers (2015) examined clinical data
based on the isolation of S. aureus from the oral cavity.
Interestingly, the two most common isolation sites were can-
didal infection and angular cheilitis, both suggestive of a
polymicrobial infection with C. albicans [72]. Furthermore,
these same two organisms have been co-isolated from the oral
cavity, periodontal pockets, and from denture stomatitis [75,
76]. Given this frequent association, several investigations
have begun to elucidate the consequences of these interactions
with regard to pathogenicity and therapeutic implications.
Using a proteomic approach, Peters and colleagues (2010)
identified a number of upregulated proteins involved in stress
response and metabolism that confers recalcitrance to host
defence strategies [77]. Furthermore, a metabolomic-based
analysis of the biofilm secretome of these dual-species
biofilms identified increased levels of sugar phosphates in
comparison to both single-species biofilms, collectively
highlighting the complex nature of this relationship [78].
Perhaps the best studied interaction is the attachment of the
two microbes. One such phenomena is “microbial
hitchhiking,” where intricate studies by Schlecht and co-
workers (2015) identified the ability of S. aureus upon binding
with fungal hyphae to facilitate its own invasion of host tissues
[55]. This mechanism, which was dependent on the fungal
adhesin ALS3, resulted in recovery of the bacteria from kidney
tissue, whereas no recovery was observed in single-species
infection. This mechanism is likely responsible for the in-
creased pathogenicity of co-infection observed in vivo [79,
80]. Synergised recalcitrance to antimicrobials has also been
observed in several studies [80, 81, 82¢¢]. Pioneer studies from
Harriot and Noverr (2009) identified a biofilm-mediated resis-
tance against vancomycin within the dual-species biofilm
[81]. More recently, the precise mechanism of this resistance
has been elucidated, with a suggestive “barrier mechanism,”
whereby S. aureus coats itself in secreted C. albicans matrix
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molecules to impede drug penetration within the biofilm
[82¢¢]. Reciprocal resistance has also been observed against
miconazole, a dual-active antifungal routinely used in angular
cheilitis infections [80].

Given the multifaceted nature of this relationship and their
frequent co-isolation from a variety of host niches, then their
co-operative role within pathogenicity and disease severity
should not go unrecognised. This relationship certainly ap-
pears to benefit S. aureus, and whether it coerces C. albicans
by peer pressure to contribute to its success is debatable. We
propose that S. aureus uses C. albicans as a physical scaffold,
forming biofilms upon the 3-D hyphal biofilm network, an
interaction we term mycofilms [80]. To date, it remains un-
clear how Candida benefits from the relationship, or whether
it is just an unwitting accomplice.

Denture Stomatitis: Mixing in a Rough
Neighbourhood

As the elderly population expands to a predicted 2 billion by
2050, the number of denture wearers will coincidently rise.
Currently, around 20% of the UK population wear removable
dentures of some form, with 70% of UK adults older than
75 years old wearing dentures [83], with many of these indi-
viduals suffering from denture stomatitis (DS), an inflamma-
tion of the palate [84]. Poor oral hygiene is frequently ob-
served within this patient group and several factors can impact
the onset of DS such as salivary flow, denture cleanliness, age
of denture, smoking, and diet [85]. Soft tissue inflammation
below or above the denture, as a result of persistent exposure
to microorganisms, is characteristic of DS [86]. Microbes fre-
quently adhere to the denture surface and a biofilm quickly
develops which can contain numerous species of bacteria and
fungi. This is aided by the varied topographical landscape that
promotes microbial retention within cracks and crevices of
acrylic substrates [83]. Denture plaque microbiome studies
by our group have identified a variety of oral pathogens, in-
cluding cariogenic bacteria, such as the Lactobacillus species
that were positively correlated with high levels of Candida
[22¢] (Fig. 1d).

Discovery of C. albicans and Lactobacillus species in den-
ture plaques was unexpected, as these bacteria have previous-
ly displayed antagonism with C. albicans at other mucosal
sites [87]. The interactions and mechanisms employed by C.
albicans and Lactobacilli remain somewhat enigmatic.
Lactobacilli species have demonstrated the ability to inhibit
C. albicans growth via the release of hydrogen peroxide and
fatty acids [88]. Previous to this, in an ex vivo experiment, L.
rhamnosus and L. reuteri altered host responses by eliciting an
increased inflammatory cytokine response in a C. albicans co-
infection model [89]. Hypothetically, a pro-inflammatory re-
sponse could exacerbate the inflammation of DS whilst ulti-
mately assisting in the clearance of C. albicans. Lactobacilli

supernatants have been shown to considerably reduce the abil-
ity of C. albicans to form biofilms [90]. However, the super-
natants were unable to significantly reduce the viability of
mature biofilms compared to bacterial cell suspensions. It is
likely that production of excreted metabolites such as hydro-
gen peroxide and short-chain fatty acids may interfere with
initial adhesion, but direct bacterial-fungal interactions occur
to disperse mature C. albicans biofilms. Patients with more
severe DS are colonised with greater numbers of C. albicans
and Lactobacilli, indicating the possibility that these organ-
isms can detect changes in their environment and alter their
behaviours appropriately to effectively colonise the oral cavity
[91].

Although Lactobacillus species are the most commonly
isolated bacteria from DS biofilms, other Candida species,
namely C. glabrata, have also been detected [92]. Co-
infection with C. glabrata results in upregulation of key viru-
lence genes (ALS3 and HWPI) in C. albicans [93]. This in-
creased virulence, in return, complements the ability of C.
glabrata to invade epithelial tissue [94]. Authors hypothesised
that during penetration of tissues by C. albicans, C. glabrata
is transported into host cells via forming aggregates on the
hyphae, as has been shown with various bacteria.

As studies get closer to understanding the mechanisms of
interactions within dual-species biofilms, this will pave the
way to elucidate how interactions within multispecies denture
plaque contribute to disease processes. Indeed, it has been
shown in vitro that multispecies interkingdom interactions
have been shown to synergise one another, with hyphae in-
duced by Streptococcus oralis, and the overall biovolume of
denture biofilms is further enhanced with accompanying
Actinomyces oris [95]. Understanding the behaviours of
multi-species biofilms in vivo will prove more useful in the
management of DS, where rough surface topography plays an
additional physical role in supporting detrimental interactions.
Though, this can be mitigated by physically altering denture
surfaces to prevent candida adhesion [96].

Endodontic Infections: Sinister Encounters in the Dark

Apical periodontitis is a pathological condition that arises
from microbial biofilm infection of the intricate anatomy of
the root canal system [97, 98]. It is a common condition in
primary endodontic infections, and even more so in those that
have been previously root canal treated. Significantly, it is a
substantial cause of dental morbidity worldwide. Under nor-
mal circumstances, the root canal is a sterile environment and
any microorganism that invades this space is regarded as a
potential cause of disease. Infection of the pulp can range from
easy-to-treat infections such as pulpitis to apical periodontitis
[99]. Root canal infections are typically of biofilm aetiology,
and the causative microorganisms of endodontitis are also
found as commensal organisms in the oral cavity. Several
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factors can lead to the onset of endodontic infections
such as diet and direct trauma. These can create a gate-
way to the root canal that oral microorganisms can ex-
ploit. Previous studies have shown that endodontic in-
fections are more complex than originally thought.
Using NGS techniques, bacteria, fungi, and viruses have
been detected within infected root canals [100]. Fungi
have been isolated from up to 55% of root canal infec-
tions with C. albicans being isolated with the highest
frequency [101]. During a 2-year study in a German
hospital, patients colonised with C. albicans were found
to be two times more likely to be colonised by E.
faecalis [102]. The ability of C. albicans to function
in both monomicrobial and polymicrobial communities
suggests that it could play a role in the pathogenesis of
endodontic infections (Fig. le).

E. faecalis, a Gram-positive bacterium, is one of the most
commonly isolated bacteria from infected root canals [103]. It
has been presented in a recent study that fungi and bacteria can
exist within infected root canals in a polymicrobial communi-
ty [104]. Based on existing knowledge of polymicrobial bio-
film communities, these findings could complicate treatment
regimens and provide a possible explanation for recurrent root
canal infections. Mechanistically, E. faecalis integrates into
Candida biofilms and reduces the overall biomass [105],
and also been shown to negatively affect C. albicans hyphal
formation [106]. The protein responsible was identified as the
bacteriocin EntV; this secreted protein demonstrated
antihyphal and antivirulence properties without antagonising
fungal growth [107¢]. Co-infection of these organisms has
been shown to attenuate C. albicans virulence in vivo, partic-
ularly with an initial administration of E. faecalis [108, 109].
Interestingly, this effect was also mimicked in a murine oral
candidiasis model, whereby initial administration of heat-
killed bacteria was shown to have a protective antifungal ef-
fect [110]. Together, these studies highlight a potential immu-
nological priming of the host response to withstand fungal
infection. In contrast, the C. albicans membrane protein
Msb2 is able to bind and inactivate host defence proteins
and antibiotics, such as daptomycin [111, 112]. Production
of Msb2 could subsequently provide the same protection to
E. faecalis, leading to long-term colonisation of the root canal.
It has also been shown that dual-species biofilms of
these two organisms upregulate expression of the C.
albicans transcriptional regulator WORI, to which con-
trols the phenotypic switch from the white to opaque
cell type, that has been shown to be less susceptible
to the innate immune system [113, 114]. C. albicans
has also demonstrated the ability to promote the growth
of E. faecalis in the gastrointestinal tract [115, 116].
These same interactions could likely occur in the root
canal, encouraging bacterial growth and preventing res-
olution of endodontic infection.

@ Springer

Conclusions

We have highlighted how some key oral diseases are influ-
enced by fungi, which undoubtedly play an important acces-
sory role to a variety of bacterial pathogens. Within the myriad
of different microbial interactions that occurs in the oral
microbiome, then synergistic and antagonistic dynamic inter-
actions constantly occur, with the most dominant manifesting
themselves in disease outcomes. Fungi, and in particular C.
albicans, can physically, metabolically, and through the re-
lease of soluble molecules play an important participatory role
in the oral diseases outlined above. It would be naive to think
of it simply as an innocent bystander—“guilt by association”;
though until it is taken seriously as a keystone oral pathogen/
commensal, then we cannot label it as an accomplice either.
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