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Candida albicans is an opportunistic pathogen found throughout multiple body sites and is
frequently co-isolated from infections of the respiratory tract and oral cavity with
Staphylococcus aureus. Herein we present the first report of the effects that S. aureus
elicits on the C. albicans transcriptome. Dual-species biofilms containing S. aureus and C.
albicansmutants defective in ALS3 or ECE1were optimised and characterised, followed by
transcriptional profiling ofC. albicans by RNA-sequencing (RNA-seq). Altered phenotypes in
C. albicansmutants revealed specific interaction profiles between fungus and bacteria. The
major adhesion and virulence proteins Als3 and Ece1, respectively, were found to have
substantial effects on the Candida transcriptome in early and mature biofilms. Despite this,
deletion of ECE1 did not adversely affect biofilm formation or the ability of S. aureus to
interact with C. albicans hyphae. Upregulated genes in dual-species biofilms corresponded
to multiple gene ontology terms, including those attributed to virulence, biofilm formation
and protein binding such as ACE2 and multiple heat-shock protein genes. This shows that
S. aureus pushes C. albicans towards a more virulent genotype, helping us to understand
the driving forces behind the increased severity of C. albicans-S. aureus infections.

Keywords: Candida, Staphylococcus, biofilm, transcriptomics, interkingdom interactions
INTRODUCTION

Candida albicans is typically found as a commensal organism at mucosal and barrier sites, such as
the oral cavity, respiratory and gastrointestinal tracts. Under certain conditions, C. albicans is
capable of causing opportunistic infections, ranging from superficial to systemic disease, making it
one of the most common fungal infections (Brown et al., 2012). The mechanism behind the
opportunistic nature of this pathogen lies in its ability to transition from a budding yeast cell to a
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highly invasive and filamentous hyphal cell, which are typically
associated as being commensal and pathogenic phenotypes,
respectively (Brown et al., 2012; Lu et al., 2014). Whether
acting as a commensal or pathogen, C. albicans frequently co-
exists with various bacterial species at mucosal sites, and the
clinical significance of polymicrobial infections is becoming
more apparent (Delaney et al., 2018). Interactions that take
place within these infections can be synergistic, leading to
traits such as increased drug resistance, virulence and biofilm
formation (Harriott and Noverr, 2011; Kean et al., 2017).

C. albicans is frequently implicated in polymicrobial
infections with bacteria such as Staphylococcus aureus,
Staphylococcus epidermidis or Pseudomonas aeruginosa (Peters
et al., 2012a; Haiko et al., 2019). A considerable amount of
infections involving C. albicans and S. aureus are linked to
biofilms in conditions such as angular chelitis, cystic fibrosis
and diabetic foot ulcers (Peters et al., 2012a; Tsui et al., 2016).

The relationship between C. albicans and S. aureus appears to
be beneficial for the bacterium, which utilises the fungi to
augment its own virulence and resistance capabilities. S. aureus
has been reported to coat itself in the C. albicans extracellular
component, b-1,3-glucan in order to increase tolerance to
vancomycin (Kong et al., 2016). Our group has also
demonstrated that C. albicans increases the virulence of S.
aureus in the Galleria mellonella infection model (Kean et al.,
2017). Similar increases in virulence in animal infection models
have also been shown (Peters and Noverr, 2013; Todd et al.,
2019). Indeed, in a murine infection model, C. albicans was
shown to have an ability to augment the agr quorum sensing
system of S. aureus, resulting in increased alpha- and delta-toxin
production, bacterial burden and mortality rates (Wang et al.,
2007; Otto, 2014; Todd et al., 2019). Moreover, because the
bacteria adhere directly to the fungal hyphae, S. aureus can more
readily invade host cells through its close association with the
invasive hyphae, which is akin to a needle-stick injection. In the
context of complex multispecies communities, C. albicans has
been described as a ‘keystone commensal’, suggesting it plays a
critical physical role in promoting and maintaining biofilm
stability in complex communities (Janus et al., 2016; Young
et al., 2020).

When interacting with C. albicans, S. aureus preferentially
adheres to the agglutinin like sequence 3 protein (Als3) (Peters
et al., 2012b), which is highly expressed during early stages of
C. albicans filamentous growth (Sherry et al., 2014). The Als3
protein plays multiple roles in the C. albicans infection cycle.
These include the initial adhesion to host epithelial cells which
subsequently induces its own endocytosis (Phan et al., 2007). As
well as binding to host tissues, Als3 mediates self-adherence as
well as Candida-bacteria binding as deletion of ALS3 results in
sparse and disorganised biofilms (Nobile et al., 2006a; Peters
et al., 2012b). These Candida-bacteria interactions may be
reciprocal, as it has been reported that C. albicans Als3 shares
over 80% homology with S. aureus collagen binding factor
(Sheppard et al., 2004). Several other genes including, but not
limited to, hyphal wall protein 1 (HWP1), enhanced filamentous
growth protein 1 (EFG1) and extent of cell elongation 1 (ECE1)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
have been described as being crucial to C. albicans pathogenesis,
and appear to be co-expressed alongside ALS3 (Ramage et al.,
2002; Nobile et al., 2006b; Moyes et al., 2016). Of these genes, and
arguably one of the most important, is ECE1, which encodes a 29
kDa cytolytic protein (named candidalysin) that is essential for
virulence and epithelial cell damage in C. albicans infections.
Cells lacking ECE1 show no identifiable morphological
differences, do not trigger epithelial cell danger response and
are avirulent in animal infection models (Moyes et al., 2016).
Recent work has revealed that the global repressor Tup1 and
transcription factor Ahr1 are both required for expression of
ALS3 and ECE1 (Ruben et al., 2020). Together these data
highlight the importance of gene networks controlling
pathogenicity, but we are still unclear on how these are
controlled in dual-species interactions. Therefore, more in-
depth analyses of these interactions are required.

Taken together, it is clear that there is a lack of knowledge
surrounding the behaviour of C. albicans in the presence of S.
aureus. Therefore, we aimed to address these gaps in the literature
regarding the transcriptomic response ofC. albicans to S. aureus in
a dual-species biofilm using a combination of phenotypic and
microscopic analyses in combination with RNA-seq. Secondly, we
sought to determine the role that key virulence genes, ALS3 and
ECE1 play in the regulation of these interactions.
MATERIALS AND METHODS

Microbial Storage and Standardisation
Candida albicans SC5314, C. albicans als3D/D (Silverman et al.,
2010), C. albicans ece1D/D (Moyes et al., 2016) and Staphylococcus
aureus NCTC 10833 were used in this study. C. albicans strains
and S. aureus were grown on Sabourauds Dextrose (SAB) agar
(ThermoFisher, Paisley, UK) and Luria Bertani (LB) agar
(ThermoFisher), respectively and stored at 4°C. For long-term
storage all organisms were stored in glycerol at -80°C.

To prepare overnight broths of each microorganism, one
colony of C. albicans was suspended in Yeast Peptone Dextrose
(YPD) media (ThermoFisher) and incubated at 30°C with
agitation at 200 rpm. Luria Bertani broth (LB, ThermoFisher)
was used to grow overnight broths of S. aureus at 37°C. Overnight
cultures were washed by centrifugation and subsequent re-
suspension in Phosphate Buffered Saline (PBS, Sigma-Aldrich,
Dorset, UK). S. aureus cells were diluted to 0.6 OD600, equating to
approximately 1x108 cells/mL as determined by serial dilution and
colony counting (data not shown). C. albicans concentrations were
determined by cell counting on a Neubauer haemocytometer and
diluted to 1x106 cells/mL in growth media.
Media Preparation
Todd Hewitt broth (THB, Sigma-Aldrich) was prepared and
supplemented with 10 µM menadione and 4 mg/mL hemin
(ThermoFisher) and mixed 1:1 with Roswell Park Memorial
Institute media (RPMI). Referred to as sTHB from herein. A
similar media has been described elsewhere and has been shown
November 2021 | Volume 11 | Article 791523
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to enable the growth of both fungi and bacteria (Montelongo-
Jauregui et al., 2016).

Biofilm Growth and Analysis
Following counting of yeast cells and standardisation of bacteria,
all cells were added to sTHB media to give a final concentration
of 1x106 CFU/mL. Biofilms were grown by adding inoculated
growth media to the desired wells of a flat-bottomed, 96-well
microtitre plate and Candida was incubated with or without the
presence of bacteria for 4 or 24 h. Each type of biofilm was grown
with 8 internal replicates and media only controls were included
to test for contamination. Following the incubation step, biofilms
were washed with PBS and then incubated with 0.05% crystal
violet (CV) as described previously (Sherry et al., 2014). CV
absorbance was measured at 570 nm using a multi-mode plate
reader (FLUOStar Omega, BMG Labtech, Aylesbury, UK).

DNA Extraction and Biofilm
Composition Analysis
Early and mature biofilms of C. albicans mutants with and
without S. aureus were grown on polymer coverslips before
removing biomass via sonication at 35kHz in an ultrasonic
water bath in 1 mL PBS for 10 minutes. DNA was extracted
from biofilm cells using the Qiagen DNA mini-kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions.
Quantitative PCR (qPCR) was then used to determine the total
number of cells within each biofilm as described by Kean et al.
(2017). qPCR was carried out using the Step-One plus real time
PCR machine (Life Technologies, Paisley, UK). The following
profile was used: 50°C for 2 min, 95°C for 2 min, followed by 40
cycles of 95°C for 3 s and 60°C for 30 s. Colony forming
equivalents (CFE) were calculated compared to a standard
curve of serially diluted DNA of each species as previously
described (O’Donnell et al., 2016). Species-specific primer
sequences are provided in Table 1.

Visualisation of Inter-Kingdom
Biofilm Interactions
C. albicans was standardised to 1x106 cells/mL, as described
above, and biofilms grown in chamber slides (ThermoFisher) for
2 h at 37°C to induce hyphal formation. Bacteria were
standardised to approximately 1x108 cells/mL, stained with 1.5
mM hexidium iodide (ThermoFisher) and incubated at 37˚C for
1 h. Bacterial cells were pelleted by centrifugation and washed
twice with PBS. Candida biofilms were washed with PBS
following initial incubation. Bacterial cells at 5x107 cells/mL
and 1.5 mM calcofluor white (Sigma-Aldrich) were added to
the chamber slide for a further hour at 37°C. After a total growth
time of 3h, biofilms were then washed with PBS and imaged
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
using an EVOS cell imaging system (ThermoFisher). Calcofluor
white and hexidium iodide fluorescence was detected at
excitation/emission wavelengths of 357/447 and 531/593 nm,
respectively, before overlaying the images.

RNA Extraction and Sequencing
Dual-species biofilms ofC. albicans and S. aureuswere grown for 4
and 24 h in 1:1 broth in T-75 cell culture flasks (Corning, UK). At
each time point, media was removed and PBS was used to remove
any non-adherent cells. Biofilm biomass was harvested using a cell
scraper and stored in 1mL RNA later (ThermoFisher). Extractions
were performed using RiboPure RNA Extraction Kits
(ThermoFisher) following the manufacturer’s instructions. RNA
quality and quantity was assessed using a Bioanalyser (Agilent,
USA), where aminimumRNA integrity number (RIN) of 7.0 and a
minimum quantity of 2.5 µg was achieved for each sample. RNA
was sequenced by Edinburgh Genomics (genomics.ed.ac.uk) using
a NovaSeq 6000 platform to provide 100bp paired end reads.

FastQC was used to assign quality scores to the produced
reads and Illumina adaptors and poor-quality reads were
trimmed using Trimmomatic. HISTAT2 was then used to align
the resulting reads to a reference C. albicans genome
(candidagenomedatabase.org) Assembly22 before the number
of sequences that were aligned to each gene were counted
using HTSeq. The counted genes were subsequently imported
to RStudio (version 3.6.3) in which, the DESeq2 package was
used to analyse the differentially expressed genes.

Transcriptome Validation
Firstly, single and dual-species biofilms were grown on coverslips
for 24h as described above. Following the growth phase, Biomass
was removed by sonication and suspended in 1mL PBS. As per the
manufacturers instructions, RNA was extracted using the RNeasy
mini kit (Qiagen) and then converted into cDNA using High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher). qPCR
was carried out using the Step-One plus real time PCR machine
(Life Technologies). The following profile was used: 50°C for
2 min, 95°C for 2 min, followed by 40 cycles of 95°C for 3 s and
60°C for 30 s. Expression of each gene-of-interest was measured in
relation to expression of ACT1 before comparisons between single
and dual-species biofilms. Gene primer sequences are provided in
Supplementary Table 1.

Statistical Analysis
Figures depicting differential gene expression between C. albicans
and S. aureus biofilms were created using the DESeq2 package in
RStudio. Data was also visualised as heatmap as and volcano plots
utilising R packages pheatmap and EnhancedVolcano. Principle
component analysis (PCA) was performed within R to visualise
TABLE 1 | Species specific primers used to identify C. albicans and S. aureus.

Target Organism Forward Sequence (5’ – 3’) Reverse Sequence (5’ – 3’) Reference

Candida albicans GAGCGTCGTTTCTCCCTCAAACCGCTGG GGTGGACGTTACCGCCGCAAGCAATGTT (Kean et al., 2017)
Staphylococcus aureus ATTTGGTCCCAGTGGTGTGGGTAT GCTGTGACAATTGCCGTTTGTCGT (O’Donnell et al., 2016)
November 2021 | Volum
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the dimension within the gene expression data which correspond
to the most variance.

Gene interaction networks were created using the ClueGO
application in Cytoscape (cytoscape.com). All other graphs and
analyses were performed in GraphPad Prism (version 7, La Jolla,
California, USA). Non-parametric Kruskal-Wallis tests were
used to compare means of corrected raw data following biofilm
assays followed by Dunn’s test for multiple comparisons.
Differences between means were deemed significant where P <
0.05 and a minimum Log2 fold-change of ±1.5 was applied when
analysing gene expression data.
RESULTS

In addition to S. aureus, other staphylococcal species such as
Staphylococcus epidermidis has displayed an ability to interact
synergistically with C. albicans (El-Azizi et al., 2004; Pammi
et al., 2013). The strain of S. aureus used herein was selected
purposefully and it lacks the full repertoire of biofilm-forming
genes and binds preferentially to C. albicans hyphae, increasing
confidence that observed changes in C. albicans is a result of
direct fungal-bacterial interactions. ALS3 has been shown to
significantly influence staphylococcal interactions and
expression of this gene has been linked to the expression of the
key virulence gene, ECE1 (Peters et al., 2012b; Ruben et al., 2020).
Therefore, to begin identifying the role these genes play in the
interkingdom interactions we investigated the impact that losing
one of these key biofilm genes has on dual-species biofilm
formation with S. aureus. Biofilms were grown for 4 and 24 h
as mono- or dual species biofilms with S. aureus and crystal
violet (CV) was used to assess total biomass (Figure 1). The
presence of S. aureus resulted in significant increases (P < 0.0001)
in dual-species biofilm biomass when grown with both WT and
ece1D/D C. albicans at both 4 and 24 h (Figures 1A, B). No
significant change in biomass was observed in als3D/D or
S. aureus only (Figures 1A–C) biofilms regardless, of biofilm
maturity. No considerable differences in fungal cell morphology
were observed, regardless of genotype (data not shown). As
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
expected, S. aureus produced a poor biofilm following 4 and
24 h growth (Figure 1C).

Given the changes associated with biofilm biomass, the
quantity of each organism in each biofilm was assessed using
qPCR (Figure 2). The number of C. albicans cells in 4 h biofilms
remained approximately 5x105 cells/mL regardless of presence or
absence of S. aureus (Figure 2A). The average number ofWT and
ece1D/D C. albicans in 24 h biofilms increased from 4.8x105 to
3.4x106 and 6.5x105 to 2.8x106 cells/mL (equivalent to a 6.9 and
4.2 fold increase), respectively. As expected, there were
significantly fewer C. albicans als3D/D cells compared to the
other C. albicans strains (P < 0.05; Figure 2B). Although there
were differences in the total number of C. albicans cells when
comparing one strain to another, the presence of S. aureus did not
affect the number of fungal cells in any biofilm. The significant
increases in biomass thus suggested that there must be an increase
in S. aureus colonising the biofilm, which was confirmed by the
quantification of total bacterial cells in the dual-species biofilms
(Supplementary Figure S1). In early dual-species biofilms, the
number of S. aureus cells in biofilms with C. albicans als3D/D was
100 and 345-fold lower than the WT and ece1D/D strains,
respectively (P < 0.05; Supplementary Figure S1A). A similar
trend was observed at 24 h, where the concentration of S. aureus
recovered from biofilms grown with WT and the ece1D/D strains
was significantly higher than that of als3D/D (P < 0.05).

The relationship between S. aureus and each C. albicans strain
was visualised using fluorescent microscopy. It was observed that
S. aureus was able to avidly bind to C. albicans hyphae of WT
and ece1D/D strains (Figure 3) (additional images are provided
as part of supplementary data; Supplementary Figure S2). As
expected, deletion of ALS3 considerably influenced the
relationship between C. albicans and S. aureus, resulting in a
decrease in the ability of S. aureus to integrate into the C. albicans
biofilm. S. aureus integration was comparable between WT and
ece1D/D strains. Taken together, Figures 1–3 show that when
forming dual-species biofilms, S. aureus is closely associated with
C. albicans hyphae which is mediated by Als3.

Differential expression (DE) analysis was performed to
identify transcriptional changes in C. albicans biofilms when
A B C

FIGURE 1 | Als3 is responsible for Candida-Staphylococcus interactions. Single and multi-species biofilms containing C. albicans and S. aureus were grown for
(A) 4 h and (B) 24 h; (C) single species S. aureus biofilm only. Biomass was quantified by staining using 0.05% crystal violet. Experiments were performed on three
separate occasions and error bars represent standard deviation of the mean (*; P < 0.05, ***; P < 0.001, ****; P < 0.0001).
November 2021 | Volume 11 | Article 791523
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interacting with S. aureus. Multivariate analysis by principal
component analysis (PCA) showed variance between samples by
biofilm maturity and presence of S. aureus (Figure 4A). The
greatest amount of variance is observed between 4 h and 24 h
with a large number of differentially expressed genes being
identified (Supplementary Figure S3). Limited numbers of
genes with increased expression were observed in single species
biofilms with only 12 upregulated genes in total being specific to
C. albicans only biofilms (Figure 4B). Each dual-species biofilm
presented its own distinct patterns of up-regulation with 50 and
101 upregulated genes in WT and als3D/D dual species biofilms
(Figure 4C). A depleted response of the ece1D/D strain was
observed with only 27 upregulated genes identified and only 5 of
these were specific to the strain. From these data, it can be
concluded that any significant, strain specific changes in C.
albicans transcription occurred within mature biofilms, and
therefore, future analyses were limited to the 24 h time point.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Full lists of upregulated genes in single and dual-species biofilms
are provided in Supplementary Tables 2–5.

Gene interaction networks show that within a 24h dual-species
biofilm there is an upregulation of genes of related function
(Figure 5). Genes are grouped by function, taking into account
their gene ontology (GO), which forms the nodes (circles) and
nodes with similar or related functions are joined by edges (lines).
When binding toWTC. albicans (Figure 5A), S. aureus stimulates
expression of several genes divided into two distinct groups. Genes
in the larger network are classified by functions such as fungal cell
wall, biofilm matrix and peptide binding (P < 0.05). As described
above, deletion ofALS3hadnoticeable effects onbiofilm formation,
resulting in a vastly different gene expression profile and
differentially expressed genes in these biofilms were divided into 4
unrelated groups (Figure 5B).Despite there being a highnumberof
upregulated genes specific to the dual-species als3D/D biofilm, only
5 gene nodes reached statistical significance (P < 0.05). Genes
A B C

FIGURE 3 | Visualising cell-cell interactions between Candida mutants and S. aureus. C albicans biofilms of (A) wild type SC5314 and (B) ALS3 and (C) ECE1
deletion mutants were grown for 2 h before adding 5x107 cells/mL of S. aureus (which had been pre-stained with hexidium iodide for 1 h prior) for a further hour.
Calcofluor white was added to the bacterial inoculum to stain the fungal biofilm before washing the biofilm to remove any non-adherent cells before imaging. Scale
bars represent 100mm.
A B

FIGURE 2 | Staphylococcus aureus does not influence the total number of fungal cells in a dual-species biofilm. Biofilm biomass was removed via sonication, DNA
was extracted and the total number of fungal cells in each biofilm was quantified using qPCR. The total number of C. albicans cells of (A) 4 h and (B) 24 h biofilms
are presented as colony forming equivalents per mL (CFE/mL). Experiments were repeated three times on three separate occasions. Data points represent individual
biofilms. CFEs of C. albicans SC5314 and ece1D/D dual-species biofilms were compared to that of als3D/D (*, P < 0.05).
November 2021 | Volume 11 | Article 791523
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composing these significant nodes are implicated in processes such
as cellular metabolism, protein folding and plasma membrane
components. A highly significant yet limited response in genes
related to stress responses and protein binding and folding was
observed in C. albicans ece1D/D cells (Figure 5C).

More in-depth analyses of transcriptional changes at
individual gene levels revealed a number of genes involved in
biofilm formation and virulence (HSP90, HSP104, FGR41 and
ACE2; Figure 6A) to be highly upregulated inWT C. albicans (all
over a Log2 fold change of 2). The increased expression of genes
related to the als3D/D strain were found to be typically
upregulated in response to external stressors. Some of the
genes with the highest increased expression were MDR1, IFD6,
HAK1 and CDR4 with a Log2 fold increase of 3.6, 4.6, 5.5 and 4.4,
respectively (Figure 6). Genes involved in virulence and biofilm
formation (HSP21, HSP104 and ACE2) were also upregulated by
more than a Log2 fold increase of 3 in ece1D/D dual-species
biofilms, much like in the WT biofilm (Figure 6C). These
findings were confirmed by qPCR analysis (Supplementary
Figure S4). Figures 5, 6 show that the response of C. albicans
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
to S. aureus is considerably different when the bacterium is
unable to bind to Als3, resulting in the upregulation of stress
response genes. Figures 5, 6 suggest that loss of Ece1 does not
alter the surface interactions between these two nosocomial
pathogens and although a limited transcriptional response is
observed in the ece1D/D strains, 63% of upregulated genes are
shared with the WT. Therefore, when bound to the preferred
receptor of Als3, S. aureus augments C. albicans virulence
through upregulation of virulence and biofilm associated genes.
DISCUSSION

The presence of polymicrobial biofilms during infection affects
patient outcome due to decreased susceptibility to antimicrobial
treatments and increased duration of hospital stay (Sancho et al.,
2012). With increased understanding of the importance of
interactions between fungi and bacteria, polymicrobial
interkingdom biofilms have been identified in increasing
numbers during infection. Of these interkingdom biofilms, C.
A

B C

FIGURE 4 | Presence of Staphylococcus aureus determines mature biofilm transcriptome. (A) Principal component analysis plot shows distinct grouping of 24 h
samples with the variable of largest variance along PC1 (65%) and second largest along PC2 (13%). Venn diagrams show the number of genes upregulated in 24 h
(B) single (C. albicans only) and (C) dual-species (C. albicans and S. aureus) biofilms.
November 2021 | Volume 11 | Article 791523
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albicans and S. aureus are frequently co-isolated from conditions
such as cystic fibrosis and periodontitis (Valenza et al., 2008;
Carolus et al., 2019). We now have a better understanding of the
mechanisms bywhich these interactions benefit S. aureus (Harriott
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and Noverr, 2009; Kong et al., 2016; Todd et al., 2019) but what
remains unclear is how this relationship affects C. albicans. The
work carriedout hereinhas therefore aimed todefine theC.albicans
transcriptome whilst interacting with S. aureus.
A

B

C

FIGURE 5 | Staphylococcus aureus induces significant upregulation of biofilm-associated genes when binding to Als3. Gene networks show interactions between
upregulated genes specific to (A) WT, (B) ALS3 and (C) ECE1 null mutant dual-species, mature biofilms. Genes of similar function are grouped together to form
nodes (circles) and nodes with similar functions are linked by edges (lines). Nodes are coloured by levels of significance and node size increases with the number of
genes involved in each function. Networks were created using ClueGO.
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Our findings from analysis of dual-species biofilms describe
a synergistic relationship between both organisms. Similar
findings have been shown by our group in a previous study
(Kean et al., 2017), whereby we showed that C. albicans
augments bacterial growth through acting as a biofilm
substrate to enhance bacterial colonisation, a process we
defined as a mycofilm. These findings were confirmed here
through biofilm compositional analysis, which revealed a
significant increase in bacterial CFEs whilst concentrations of
fungal cells remained unchanged. Close interactions between C.
albicans and S. aureus were observed in Figure 3. Loss of Ece1
did not appear to affect this relationship which is in line with
that reported by Peters et al. (2012b) who identified Als3 as the
main binding receptor for S. aureus and reported a significant
decrease in the ability of S. aureus to bind to C. albicans hyphae
following ALS3 deletion. These findings were more recently
confirmed by (Van Dyck et al., 2021).

Although lacking the ability to elicit a proper immune
response in the host, ece1D/D is still capable of forming robust
biofilms (as observed in Figure 1) due to the significant up
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
regulation of protein folding and binding genes as shown by the
gene interaction networks in Figure 5. The same strain was also
found to not exhibit any significant morphological differences to
WT C. albicans (Moyes et al., 2016). It could be hypothesised that
these cells may also prove to be more tolerant to external stimuli
such as heat, which can be inferred from the significant
upregulation of multiple heat-shock genes (HSP104, HSP21
and HSP70).

Data presented in Figure 4 showed that a limited number of
transcriptional changes occurred in ece1D/D cells in comparison
to the WT. Based on previous data describing Ece1 as a key
virulence protein, it was hypothesised that transcriptional
changes would mirror that of WT C. albicans. However, there
were considerably fewer differentially regulated genes in the
ECE1 null mutant than other strains. Transcriptional analysis
revealed that PGA4 was downregulated in single-species ece1D/D
biofilms when compared to WT (Figure S5). Expression of
PGA4 is required for proper cell wall biosynthesis whilst
playing a minor role in regulating responses to antibiotics (Ene
et al., 2012). As shown in Figure S6, expression of PGA4 is linked
to expression of several other cell wall related genes such as
CHT2, ECM331, BGL2 and MP65 (Heilmann et al., 2011; Gil-
Bona et al., 2018). This differential cell wall makeup may provide
insight as to why the transcriptome of ECE1 null strains responds
differently to S. aureus compared to WT C. albicans.

Binding of S. aureus to WT and ece1D/D C. albicans induces
upregulation of several genes whose functions are closely related
to biofilm and hyphal formation. Genes involved in these
processes include virulence, adhesion and filamentation genes
such as HSP90. HSP90 is the most commonly studied heat shock
protein in C. albicans, due to its involvement as a transcription
factor in several virulence associated pathways such as biofilm
formation and hyphal morphogenesis (O’Meara et al., 2017).
Other key upregulated genes include HSP104, FGR41 and ACE2,
which also play key roles in effective formation of hyphae and
biofilms (Kelly et al., 2004; Fiori et al., 2012; Lan et al., 2017).

GO term analysis of WT strains revealed multiple groups of
genes whose functions are related to biofilm formation such as
peptide binding and extra-cellular matrix (ECM) formation.
ECM is a key factor behind the recalcitrant nature of biofilms
towards antimicrobial therapy (Singh et al., 2017). As described
by Kong et al. (2016), C. albicans ECM components protect
S. aureus. It can therefore, be deduced from this that S. aureus
induces an upregulation of genes involved in C. albicans biofilm
and ECM production such as GLX3 (Cabello et al., 2018) to
protect itself and the fungal cells from antimicrobials. Recent
work has also shown that not only does S. aureus promote ECM
production in C. albicans but the fungi also decreases expression
of S. aureus Nuc. Nuc cleaves extracellular DNA and promotes
biofilm dispersal (Vila et al., 2021). From this it can be deduced
that C. albicans promotes S. aureus ECM production in S. aureus
and vice versa. This supports data presented in Figure 1 and
previous findings by Kean et al. (2017) who reported an increase
in biofilm formation and virulence in a dual-species inoculum.

As mentioned above, despite deletion of ALS3 significantly
altering the binding pattern of S. aureus it was not abolished. This
A

B

C

FIGURE 6 | Identification of key genes with increased expression in dual-
species biofilms. Log2 fold change of key genes in 24 h dual-species biofilms
of (A) WT, (B) als3D/D and (C) ece1D/D C albicans with S. aureus.
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resulted in increased expression of over 100 highly interconnected
genes involved in biological processes, such as response to drugs and
cellular response to stress as demonstrated in Figure 5. Although
several genes were upregulated in both WT and als3D/D dual-
species biofilms, there was minimal crossover of enriched GO terms
in gene networks. This suggests that even though similar genes are
upregulated in each strain, deletion of ALS3 significantly alters how
C. albicans interacts with and responds to S. aureus. Among the
genes up regulated were CDR4, MDR1 and CAP1.Although there is
no confirmed role for CDR4, it is upregulated in the C. albicans core
stress response (Enjalbert et al., 2006). Similar to CDR1, CDR4
belongs to the ABC superfamily of efflux pumps, which can lead to
speculation that the protein encoded by CDR4 is also involved in
drug resistance. MDR1 and CAP1 are also induced by external
stressors such as antifungal drugs and oxidative stress, respectively
(Feng et al., 2018). Therefore, it can be deduced that when S. aureus
binds to other adhesion proteins other than Als3, it triggers
C. albicans stress response pathways. Although this stress does
not appear to hinder hyphal formation, virulence may be attenuated
through loss of Als3.

Despite this study accurately describing the effects of S. aureus
on the transcriptome of C. albicans, it is not without its
limitations. For example, this study used a biofilm-deficient
strain of S. aureus to focus more on direct fungal-bacterial
interactions. The use of a biofilm positive bacterial strain is
likely to interact with the C. albicans strains used herein
differently, therefore resulting in a different fungal response.
This would then help create a more detailed picture of how
S. aureus influences the C. albicans transcriptome. Additionally,
transcriptomics is not without its drawbacks such as this study
only captured the C. albicans transcriptome at 4 and 24 h, which
may be significantly different to earlier or late time-points.
However, the inclusion of additional permutations in
transcriptomics experiments can significantly increase costs.
Previous work by Cue and colleagues identified that the S.
aureus strain herein presented a biofilm deficient phenotype
via secretion of a heat-stable peptide (Cue et al., 2015). This
peptide was shown to inhibit biofilm formation in other S. aureus
strains and could therefore be a strain specific and contributing
factor towards the transcriptomic response observed above.

To conclude, this study is the first to report on the changes in
the C. albicans transcriptome caused by the closely associated
bacterial pathogen, S. aureus. We describe, under normal
circumstances in WT C. albicans, an upregulation of biofilm
and virulence associated genes when S. aureus adheres to Als3
that likely leads to a more virulent phenotype. We also show that
ECE1 is not required for staphylococci to interact with C. albicans
and that the relationship between these two organisms is beneficial
for the bacterium as well as the yeast through upregulation of
adhesion and biofilm formation genes. S. aureus induces the
upregulation of virulence-associated genes in ece1D/D dual-
species that may compensate for the loss of virulence that comes
with the loss of candidalysin. However, further experiments are
required to discern if a virulent phenotype is indeed restored.
Exploring these interactions in more depth will continue to unveil
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
additional mechanisms of interaction, which may help to explain
their frequent co-isolation in biofilm-related infections and
identify potential, novel antimicrobial therapies to combat these
complex biofilm communities in a diverse range of clinically
important contexts.
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