283 research outputs found

    Scanning beacon locator system: A concept

    Get PDF
    If aircraft and ships are equipped with beacons capable of communicating with satellites, rescue efforts may speed up significantly. In event of disaster, beacons can transmit distress message to satellite which, in turn, will relay message to nearest rescue center, indicating distress location

    Position determination systems

    Get PDF
    A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations

    Doppler radar having phase modulation of both transmitted and reflected return signals

    Get PDF
    A microwave radar signal is generated for transmission through an antenna. Before transmission, the signal is phase modulated by 0 deg or 90 deg amounts during each alternate half-cycles of an intermediate frequency (IF) clock signal. After transmission and return, the signal is again phase modulated the same amounts during each alternate half-cycles. The return phase modulated signal is mixed with a leakage signal component of the microwave signal, leaving an IF Doppler. The IF Doppler signal may then be amplified, removing any requirement that direct current level signals be amplified and also removing the effect of detector noise from the Doppler signal

    Apollo-Soyuz Doppler-tracking experiment MA-089

    Get PDF
    The Doppler tracking experiment was designed to test the feasibility of improved mapping of the earth's gravity field by the low-low satellite-to-satellite tracking method and to observe variations in the electron density of the ionosphere between the two spacecraft. Data were taken between 1:01 and 14:37 GMT on July 24, 1975. Baseline data taken earlier, while the docking module was still attached to the command and service module, indicated that the equipment operated satisfactorily. The ionospheric data contained in the difference between the Doppler signals at the two frequencies are of excellent quality, resulting in valuable satellite-to-satellite observations, never made before, of wave phenomena in the ionosphere. The gravity data were corrupted by an unexpectedly high noise level of as-yet-undetermined origin, with periods greater than 150 seconds, that prevented unambiguous identification of gravity-anomaly signatures

    A Cu2+ (S = 1/2) Kagom\'e Antiferromagnet: MgxCu4-x(OH)6Cl2

    Full text link
    Spin-frustrated systems are one avenue for inducing macroscopic quantum states in materials. However, experimental realization of this goal has been difficult because of the lack of simple materials and, if available, the separation of the unusual magnetic properties arising from exotic magnetic states from behavior associated with chemical disorder, such as site mixing. Here we report the synthesis and magnetic properties of a new series of magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder within the kagom\'e layers is minimized, as directly measured by X-ray diffraction. Our results reveal that many of the properties of these materials and related systems are not due to disorder of the magnetic lattice but rather reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    High-Field ESR Measurements of S=1/2 Kagome Lattice Antiferromagnet BaCu3_3V2_2O8_8(OH)2_2

    Full text link
    High-field electron spin resonance (ESR) measurements have been performed on vesignieite BaCu3_3V2_2O8_8(OH)2_2, which is considered as a nearly ideal model substance of SS=1/2 kagome antiferromagnet, in the temperature region from 1.9 to 265 K. The frequency region is from 60 to 360 GHz and the applied pulsed magnetic field is up to 16 T. Observed g-value and linewidth show the increase below 20 K, which suggest the development of the short range order. Moreover, a gapless spin liquid ground state is suggested from the frequency-field relation at 1.9 K.Comment: 5 pages, 6 figures, jpsj2 class file, to be published in J. Phys. Soc. Jp

    Kondo physics in the algebraic spin liquid

    Full text link
    We study Kondo physics in the algebraic spin liquid, recently proposed to describe ZnCu3(OH)6Cl2ZnCu_{3}(OH)_{6}Cl_{2} [Phys. Rev. Lett. {\bf 98}, 117205 (2007)]. Although spin dynamics of the algebraic spin liquid is described by massless Dirac fermions, this problem differs from the Pseudogap Kondo model, because the bulk physics in the algebraic spin liquid is governed by an interacting fixed point where well-defined quasiparticle excitations are not allowed. Considering an effective bulk model characterized by an anomalous critical exponent, we derive an effective impurity action in the slave-boson context. Performing the large-NσN_{\sigma} analysis with a spin index NσN_{\sigma}, we find an impurity quantum phase transition from a decoupled local-moment state to a Kondo-screened phase. We evaluate the impurity spin susceptibility and specific heat coefficient at zero temperature, and find that such responses follow power-law dependencies due to the anomalous exponent of the algebraic spin liquid. Our main finding is that the Wilson's ratio for the magnetic impurity depends strongly on the critical exponent in the zero temperature limit. We propose that the Wilson's ratio for the magnetic impurity may be one possible probe to reveal criticality of the bulk system

    High-field Phase Diagram and Spin Structure of Volborthite Cu3V2O7(OH)2/2H2O

    Full text link
    We report results of 51V NMR experiments on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice. Following the previous experiments in magnetic fields BB below 12 T, the NMR measurements have been extended to higher fields up to 31 T. In addition to the two already known ordered phases (phases I and II), we found a new high-field phase (phase III) above 25 T, at which a second magnetization step has been observed. The transition from the paramagnetic phase to the antiferromagnetic phase III occurs at 26 K, which is much higher than the transition temperatures from the paramagnetic to the lower field phases I (B < 4.5 T) and II (4.5 < B < 25 T). At low temperatures, two types of the V sites are observed with different relaxation rates and line shapes in phase III as well as in phase II. Our results indicate that both phases II and III exhibit a heterogeneous spin state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order. The magnetization of the latter system exhibits a sudden increase upon entering into phase III, resulting in the second magnetization step at 26 T.We discuss the possible spin structure in phase III.Comment: 9 pages, 12 figure
    • …
    corecore