86 research outputs found
The Long-Term Spectroscopic Misadventures of AG Dra with a Nod toward V407 Cyg: Degenerates Behaving Badly
We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010
Persistence in higher dimensions : a finite size scaling study
We show that the persistence probability , in a coarsening system of
linear size at a time , has the finite size scaling form where is the persistence exponent and
is the coarsening exponent. The scaling function for
and is constant for large . The scaling form implies a fractal
distribution of persistent sites with power-law spatial correlations. We study
the scaling numerically for Glauber-Ising model at dimension to 4 and
extend the study to the diffusion problem. Our finite size scaling ansatz is
satisfied in all these cases providing a good estimate of the exponent
.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.
The spectroscopic evolution of the symbiotic-like recurrent nova V407 Cygni during its 2010 outburst. I. The shock and its evolution
On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8
and detected by Fermi. Using medium and high resolution ground-based optical
spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we
describe the behavior of the high-velocity profile evolution for this nova
during its first three months. The peak of the X-ray emission occurred at about
day 40 with a broad maximum and decline after day 50. The main changes in the
optical spectrum began at around that time. The He II 4686A line first appeared
between days 7 and 14 and initially displayed a broad, symmetric profile that
is characteristic of all species before day 60. Low-excitation lines remained
comparatively narrow, with v(rad,max) of order 200-400 km/s. They were
systematically more symmetric than lines such as [Ca V], [Fe VII], [Fe X], and
He II, all of which showed a sequence of profile changes going from symmetric
to a blue wing similar to that of the low ionization species but with a red
wing extended to as high as 600 km/s . The Na I D doublet developed a broad
component with similar velocity width to the other low-ionization species. The
O VI Raman features were not detected. We interpret these variations as
aspherical expansion of the ejecta within the Mira wind. The blue side is from
the shock penetrating into the wind while the red wing is from the low-density
periphery. The maximum radial velocities obey power laws, v(rad,max) t^{-n}
with n ~ 1/3 for red wing and ~0.8 for the blue. (truncated)Comment: Accepted for publication, A&A (submitted: 9 Oct 2010; accepted: 1 Dec
2010) in press; based on data obtained with Swift, Nordic Optical Telescope,
Ondrejov Observatory. Corrected typo, Fermi?LAT detection was at energies
above 100 MeV (with thanks to C. C. Cheung
The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra
We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer
Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years
respectively after the outburst of the old classical nova QU Vulpeculae (Nova
Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line
emission from neon and oxygen. Our analysis shows that neon was, at the first
and last epochs respectively, more than 76 and 168 times overabundant by number
with respect to hydrogen compared to the solar value. These high lower limits
to the neon abundance confirm that QU Vul involved a thermonuclear runaway on
an ONeMg white dwarf and approach the yields predicted by models of the
nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl
Slow Relaxation in a Constrained Ising Spin Chain: a Toy Model for Granular Compaction
We present detailed analytical studies on the zero temperature coarsening
dynamics in an Ising spin chain in presence of a dynamically induced field that
favors locally the `-' phase compared to the `+' phase. We show that the
presence of such a local kinetic bias drives the system into a late time state
with average magnetization m=-1. However the magnetization relaxes into this
final value extremely slowly in an inverse logarithmic fashion. We further map
this spin model exactly onto a simple lattice model of granular compaction that
includes the minimal microscopic moves needed for compaction. This toy model
then predicts analytically an inverse logarithmic law for the growth of density
of granular particles, as seen in recent experiments and thereby provides a new
mechanism for the inverse logarithmic relaxation. Our analysis utilizes an
independent interval approximation for the particle and the hole clusters and
is argued to be exact at late times (supported also by numerical simulations).Comment: 9 pages RevTeX, 1 figures (.eps
Status of the PICASSO Project
The Picasso project is a dark matter search experiment based on the
superheated droplet technique. Preliminary runs performed at the Picasso Lab in
Montreal have showed the suitability of this detection technique to the search
for weakly interacting cold dark matter particles. In July 2002, a new phase of
the project started. A batch of six 1-liter detectors with an active mass of
approximately 40g was installed in a gallery of the SNO observatory in Sudbury,
Ontario, Canada at a depth of 6,800 feet (2,070m). We give a status report on
the new experimental setup, data analysis, and preliminary limits on
spin-dependent neutralino interaction cross section.Comment: 3 pages, 2 figures. To appear in the Proceedings of the TAUP 2003
conference, 5-9 September, 2003, University of Washington, Seattle, US
Current correlators to all orders in the quark masses
The contributions to the coefficient functions of the quark and the mixed
quark-gluon condensate to mesonic correlators are calculated for the first time
to all orders in the quark masses, and to lowest order in the strong coupling
constant. Existing results on the coefficient functions of the unit operator
and the gluon condensate are reviewed. The proper factorization of short- and
long-distance contributions in the operator product expansion is discussed in
detail. It is found that to accomplish this task rigorously the operator
product expansion has to be performed in terms of non-normal-ordered
condensates. The resulting coefficient functions are improved with the help of
the renormalization group. The scale invariant combination of dimension 5
operators, including mixing with the mass operator, which is needed for the
renormalization group improvement, is calculated in the leading order.Comment: 24 pages, LateX file, TUM-T31-21/92, 1 postscript file include
Novae Ejecta as Colliding Shells
Following on our initial absorption-line analysis of fifteen novae spectra we
present additional evidence for the existence of two distinct components of
novae ejecta having different origins. As argued in Paper I one component is
the rapidly expanding gas ejected from the outer layers of the white dwarf by
the outburst. The second component is pre-existing outer, more slowly expanding
circumbinary gas that represents ejecta from the secondary star or accretion
disk. We present measurements of the emission-line widths that show them to be
significantly narrower than the broad P Cygni profiles that immediately precede
them. The emission profiles of novae in the nebular phase are distinctly
rectangular, i.e., strongly suggestive of emission from a relatively thin,
roughly spherical shell. We thus interpret novae spectral evolution in terms of
the collision between the two components of ejecta, which converts the early
absorption spectrum to an emission-line spectrum within weeks of the outburst.
The narrow emission widths require the outer circumbinary gas to be much more
massive than the white dwarf ejecta, thereby slowing the latter's expansion
upon collision. The presence of a large reservoir of circumbinary gas at the
time of outburst is suggestive that novae outbursts may sometime be triggered
by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than
steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in
Astrophysics & Space Scienc
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
- …