3,904 research outputs found
Effect of ancilla's structure on quantum error correction using the 7-qubit Calderbank-Shor-Steane code
In this work we discuss the ability of different types of ancillas to control
the decoherence of a qubit interacting with an environment. The error is
introduced into the numerical simulation via a depolarizing isotropic channel.
After the correction we calculate the fidelity as a quality criterion for the
qubit recovered. We observe that a recovery method with a three-qubit ancilla
provides reasonable good results bearing in mind its economy. If we want to go
further, we have to use fault-tolerant ancillas with a high degree of
parallelism, even if this condition implies introducing new ancilla
verification qubits.Comment: 24 pages, 10 Figures included. Accepted in Phys. Rev. A 200
Good Quantum Error-Correcting Codes Exist
A quantum error-correcting code is defined to be a unitary mapping (encoding)
of k qubits (2-state quantum systems) into a subspace of the quantum state
space of n qubits such that if any t of the qubits undergo arbitrary
decoherence, not necessarily independently, the resulting n qubits can be used
to faithfully reconstruct the original quantum state of the k encoded qubits.
Quantum error-correcting codes are shown to exist with asymptotic rate k/n = 1
- 2H(2t/n) where H(p) is the binary entropy function -p log p - (1-p) log
(1-p). Upper bounds on this asymptotic rate are given.Comment: Latex, 23 pages, 1 figure. Revised April 1996 to give more intuition
and an example. Submitted to Phys. Rev.
Integrated software package STAMP for minor planets
The integrated software package STAMP allowed for rapid and exact reproduction of the tables of the year-book 'Ephemerides of Minor Planets.' Additionally, STAMP solved the typical problems connected with the use of the year-book. STAMP is described. The year-book 'Ephemerides of Minor Planets' (EMP) is a publication used in many astronomical institutions around the world. It contains all the necessary information on the orbits of the numbered minor planets. Also, the astronomical coordinates are provided for each planet during its suitable observation period
An Universal Quantum Network - Quantum CPU
An universal quantum network which can implement a general quantum computing
is proposed. In this sense, it can be called the quantum central processing
unit (QCPU). For a given quantum computing, its realization of QCPU is just its
quantum network. QCPU is standard and easy-assemble because it only has two
kinds of basic elements and two auxiliary elements. QCPU and its realizations
are scalable, that is, they can be connected together, and so they can
construct the whole quantum network to implement the general quantum algorithm
and quantum simulating procedure.Comment: 8 pages, Revised versio
Quantum Error Correction and Orthogonal Geometry
A group theoretic framework is introduced that simplifies the description of
known quantum error-correcting codes and greatly facilitates the construction
of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1
error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors,
and 1 to 29 qubits correcting 5 errors.Comment: RevTex, 4 pages, no figures, submitted to Phys. Rev. Letters. We have
changed the statement of Theorem 2 to correct it -- we now get worse rates
than we previously claimed for our quantum codes. Minor changes have been
made to the rest of the pape
Quantum Error Correction via Codes over GF(4)
The problem of finding quantum error-correcting codes is transformed into the
problem of finding additive codes over the field GF(4) which are
self-orthogonal with respect to a certain trace inner product. Many new codes
and new bounds are presented, as well as a table of upper and lower bounds on
such codes of length up to 30 qubits.Comment: Latex, 46 pages. To appear in IEEE Transactions on Information
Theory. Replaced Sept. 24, 1996, to correct a number of minor errors.
Replaced Sept. 10, 1997. The second section has been completely rewritten,
and should hopefully be much clearer. We have also added a new section
discussing the developments of the past year. Finally, we again corrected a
number of minor error
Topological Quantum Error Correction with Optimal Encoding Rate
We prove the existence of topological quantum error correcting codes with
encoding rates asymptotically approaching the maximum possible value.
Explicit constructions of these topological codes are presented using surfaces
of arbitrary genus. We find a class of regular toric codes that are optimal.
For physical implementations, we present planar topological codes.Comment: REVTEX4 file, 5 figure
Universal Quantum Computation with the nu=5/2 Fractional Quantum Hall State
We consider topological quantum computation (TQC) with a particular class of
anyons that are believed to exist in the Fractional Quantum Hall Effect state
at Landau level filling fraction nu=5/2. Since the braid group representation
describing statistics of these anyons is not computationally universal, one
cannot directly apply the standard TQC technique. We propose to use very noisy
non-topological operations such as direct short-range interaction between
anyons to simulate a universal set of gates. Assuming that all TQC operations
are implemented perfectly, we prove that the threshold error rate for
non-topological operations is above 14%. The total number of non-topological
computational elements that one needs to simulate a quantum circuit with
gates scales as .Comment: 17 pages, 12 eps figure
- …
