research

Universal Quantum Computation with the nu=5/2 Fractional Quantum Hall State

Abstract

We consider topological quantum computation (TQC) with a particular class of anyons that are believed to exist in the Fractional Quantum Hall Effect state at Landau level filling fraction nu=5/2. Since the braid group representation describing statistics of these anyons is not computationally universal, one cannot directly apply the standard TQC technique. We propose to use very noisy non-topological operations such as direct short-range interaction between anyons to simulate a universal set of gates. Assuming that all TQC operations are implemented perfectly, we prove that the threshold error rate for non-topological operations is above 14%. The total number of non-topological computational elements that one needs to simulate a quantum circuit with LL gates scales as L(logL)3L(\log L)^3.Comment: 17 pages, 12 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020