2,567 research outputs found

    Diamagnetic susceptibility of spin-triplet ferromagnetic superconductors

    Full text link
    We calculate the diamagnetic susceptibility in zero external magnetic field above the phase transition from ferromagnetic phase to phase of coexistence of ferromagnetic order and unconventional superconductivity. For this aim we use generalized Ginzburg-Landau free energy of unconventional ferromagnetic superconductor with spin-triplet electron pairing. A possible application of the result to some intermetallic compounds is briefly discussed.Comment: 7 pages, 1 figur

    Phenomenological description of anisotropy effects in some ferromagnetic superconductors

    Get PDF
    We study phenomenologically by using the previously derived Landau free energy, the role of anisotropy in ferromagnetic superconductors UGe2, URhGe, and UCoGe. The three compounds are separately discussed with the special stress on UGe2. The main effect comes from the strong uniaxial anisotropy of magnetization while the anisotropy of Cooper pairs and crystal anisotropy only slightly change the phase diagram in the vicinity of Curie temperature. The limitations of this approach are also discussed.Comment: 12 pages, 4 figure

    Meissner phases in spin-triplet ferromagnetic superconductors

    Full text link
    We present new results for the properties of phases and phase transitions in spin-triplet ferromagnetic superconductors. The superconductivity of the mixed phase of coexistence of ferromagnetism and unconventional superconductivity is triggered by the presence of spontaneous magnetization. The mixed phase is stable but the other superconducting phases that usually exist in unconventional superconductors are either unstable or for particular values of the parameters of the theory some of them are metastable at relatively low temperatures in a quite narrow domain of the phase diagram. Phase transitions from the normal phase to the phase of coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase can be either of first or second order depending on the concrete substance. Cooper pair and crystal anisotropies determine a more precise outline of the phase diagram shape and reduce the degeneration of ground states of the system but they do not change drastically phase stability domains and thermodynamic properties of the respective phases. The results are discussed in view of application to metallic ferromagnets as UGe2, ZrZn2, URhGe.Comment: 21 pages, 7 figures; Phys. Rev. B (2005) in pres

    Functional renormalization for quantum phase transitions with non-relativistic bosons

    Full text link
    Functional renormalization yields a simple unified description of bosons at zero temperature, in arbitrary space dimension dd and for MM complex fields. We concentrate on nonrelativistic bosons and an action with a linear time derivative. The ordered phase can be associated with a nonzero density of (quasi) particles nn. The behavior of observables and correlation functions in the ordered phase depends crucially on the momentum kphk_{ph}, which is characteristic for a given experiment. For the dilute regime kphn1/dk_{ph}\gtrsim n^{1/d} the quantum phase transition is simple, with the same ``mean field'' critical exponents for all dd and MM. On the other hand, the dense regime kphn1/dk_{ph}\ll n^{1/d} reveals a rather rich spectrum of features, depending on dd and MM. In this regime one observes for d3d\leq 3 a crossover to a relativistic action with second time derivatives. This admits order for d>1d>1, whereas d=1d=1 shows a behavior similar to the low temperature phase of the classical two-dimensional O(2M)O(2M)-models.Comment: 31 pages, new reference
    corecore