2 research outputs found

    Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients

    No full text
    T cell responses to allogeneic major histocompatibility complex antigens present a formidable barrier to organ transplantation, necessitating long-term immunosuppression to minimize rejection. Chronic rejection and drug-induced morbidities are major limitations that could be overcome by allograft tolerance induction. Tolerance was first intentionally induced in humans via combined kidney and bone marrow transplantation (CKBMT), but the mechanisms of tolerance in these patients are incompletely understood. We now establish an assay to identify donor-reactive T cells and test the role of deletion in tolerance after CKBMT. Using high-throughput sequencing of the T cell receptor B chain CDR3 region, we define a fingerprint of the donor-reactive T cell repertoire before transplantation and track those clones after transplant. We observed posttransplant reductions in donor-reactive T cell clones in three tolerant CKBMT patients; such reductions were not observed in a fourth, nontolerant, CKBMT patient or in two conventional kidney transplant recipients on standard immunosuppressive regimens. T cell repertoire turnover due to lymphocyte-depleting conditioning only partially accounted for the observed reductions in tolerant patients; in fact, conventional transplant recipients showed expansion of circulating donor-reactive clones, despite extensive repertoire turnover. Moreover, loss of donor-reactive T cell clones more closely associated with tolerance induction than in vitro functional assays. Our analysis supports clonal deletion as a mechanism of allograft tolerance in CKBMT patients. The results validate the contribution of donor-reactive T cell clones identified before transplant by our method, supporting further exploration as a potential biomarker of transplant outcomes.status: publishe

    Early expansion of donor-specific Tregs in tolerant kidney transplant recipients

    No full text
    Allograft tolerance, in which a graft is accepted without long-term immunosuppression, could overcome numerous obstacles in transplantation. Human allograft tolerance has been intentionally induced across HLA barriers via combined kidney and bone marrow transplantation (CKBMT) with a regimen that induces only transient chimerism. Tregs are enriched early after CKBMT. While deletional tolerance contributes to long-term tolerance, the role of Tregs remains unclear. We have optimized a method for identifying the donor-specific Treg repertoire and used it to interrogate the fate of donor-specific Tregs after CKBMT. We expanded Tregs with several different protocols. Using functional analyses and T cell receptor sequencing, we found that expanding sorted Tregs with activated donor B cells identified the broadest Treg repertoire with the greatest potency and donor specificity of suppression. This method outperformed both alloantigen stimulation with CTLA4Ig and sequencing of CFSElo cells from the primary mixed lymphocyte reaction. In 3 tolerant and 1 nontolerant CKBMT recipients, we sequenced donor-specific Tregs before transplant and tracked them after transplant. Preexisting donor-specific Tregs were expanded at 6 months after CKBMT in tolerant patients and were reduced in the nontolerant patient. These results suggest that early expansion of donor-specific Tregs is involved in tolerance induction following CKBMT
    corecore