40 research outputs found

    Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study

    Get PDF
    Dystrophic muscles suffer from enhanced oxidative stress. We have investigated whether administration of an antioxidant, epigallocatechin-3-gallate (EGCG), a component of green tea, reduces their oxidative stress and pathophysiology in mdx mice, a mild phenotype model of human Duchenne-type muscular dystrophy. EGCG (5mg/kg body weight in saline) was injected subcutaneously 4× a week into the backs of C57 normal and dystrophin-deficient mdx mice for 8weeks after birth. Saline was injected into normal and mdx controls. EGCG had almost no observable effects on normal mice or on the body weights of mdx mice. In contrast, it produced the following improvements in the blood chemistry, muscle histology, and electrophysiology of the treated mdx mice. First, the activities of serum creatine kinase were reduced to normal levels. Second, the numbers of fluorescent lipofuscin granules per unit volume of soleus and diaphragm muscles were significantly decreased by about 50% compared to the numbers in the corresponding saline-treated controls. Third, in sections of diaphragm and soleus muscles, the relative area occupied by histologically normal muscle fibres increased significantly 1.5- to 2-fold whereas the relative areas of connective tissue and necrotic muscle fibres were substantially reduced. Fourth, the times for the maximum tetanic force of soleus muscles to fall by a half increased to almost normal values. Fifth, the amount of utrophin in diaphragm muscles increased significantly by 17%, partially compensating for the lack of dystrophin expressio

    等張または低張条件下のラット耳下腺腺房細胞におけるα1-アドレナリン受容体誘導性のAQP5細胞内移動機序

    Get PDF
    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry

    An incident involving blood sucking by a tick in a suburb in Japan

    Get PDF
    We encountered a patient whose blood was sucked by Haemaphysalis longicornis in the suburb of a business city in Tokushima prefecture in Japan. The tick, which had been attached to the lower limb of the patient for one week, measured 10 mm in length. There were no notable objective or subjective findings after the complete extirpation of the tick. The area had not been known in recent history to be a habitat of ticks, and, thus, this case is of importance in terms of predicting future trends of tick-borne diseases in Japan

    ピエゾ型機械受容イオンチャネル1は間葉系幹細胞の分化運命決定の調節因子として機能する

    Get PDF
    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression

    Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages

    Get PDF
    In inflammatory and oxidative liver injury, virus proteins and reactive oxygen species are involved in the regulation of proinflammatory cytokine production by macrophages. This study investigated the effects of estradiol (E2) and progesterone on the unstimulated and oxidative stress-stimulated production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, and macrophage chemotactic protein (MCP)-1 by peritoneal macrophages isolated from male and female mice. E2 inhibited the cytokine production of TNF-α, IL-1β, MIP-2, and MCP-1 by the unstimulated macrophages from males and females, which was then further stimulated by progesterone. The exposure to hydrogen peroxide in the macrophages from both sexes induced the production of cytokine. The hydrogen peroxide-stimulated cytokine production was suppressed by E2 and enhanced by progesterone. The sex hormone effects on the unstimulated and stimulated macrophages were blocked by their receptor antagonists and showed no significant difference between male and female subjects. These findings suggest that E2 may play a favorable role in the course of persistent liver injury, by inhibiting proinflammatory cytokine production, which, in addition, progesterone may counteract the favorable E2 effects through their receptors

    eIF2α dephosphorylation and cell proliferation in CHO-K1 cells

    Get PDF
    GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO-K1)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHOK1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of wild type GADD34 protein in CHOK1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells

    Effects of a 1.5 T time-varying magnetic field on cell volume regulation of bovine adrenal chromaffin cells in hyposmotic media

    Get PDF
    Effects of a time-varying magnetic field on cell volume regulation by hyposmotic stress in cultured bovine adrenal chromaffin cells were examined. Through regulatory volume decrease (RVD), cell volume of chromaffin cells that were incubated in a hypotonic medium initially increased, reached a peak and finally recovered to the initial value. Two hour exposure to a magnetic field and addition of cytochalasin D increased peak value and delayed return to initial value. Intracellular F-actin contents initially decreased but returned to normal levels after 10 sec. Two hour exposure to the magnetic field and addition of cytochalasin D continuously reduced the F-actin content. Results suggest that exposure to the magnetic field stimulated disruption of the actin cytoskeleton and that the disruption delayed the recovery to the volume prior to osmotic stress

    Mechanisms Underlying Activation of α1-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions

    No full text
    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry
    corecore