231 research outputs found

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars

    Get PDF
    To dissect the genetic factors controlling naturally occurring variation of heading date in Asian rice cultivars, we performed QTL analyses using F2 populations derived from crosses between a japonica cultivar, Koshihikari, and each of 12 cultivars originating from various regions in Asia. These 12 diverse cultivars varied in heading date under natural field conditions in Tsukuba, Japan. Transgressive segregation was observed in 10 F2 combinations. QTL analyses using multiple crosses revealed a comprehensive series of loci involved in natural variation in flowering time. One to four QTLs were detected in each cross combination, and some QTLs were shared among combinations. The chromosomal locations of these QTLs corresponded well with those detected in other studies. The allelic effects of the QTLs varied among the cross combinations. Sequence analysis of several previously cloned genes controlling heading date, including Hd1, Hd3a, Hd6, RFT1, and Ghd7, identified several functional polymorphisms, indicating that allelic variation at these loci probably contributes to variation in heading date. Taken together, the QTL and sequencing results indicate that a large portion of the phenotypic variation in heading date in Asian rice cultivars could be generated by combinations of different alleles (possibly both loss- and gain-of-function) of the QTLs detected in this study

    Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice

    Get PDF
    Rice restorer lines play an important role in three-line hybrid rice production. Previous research based on molecular tagging has suggested that the restorer lines used widely today have narrow genetic backgrounds. However, patterns of genetic variation at a genome-wide scale in these restorer lines remain largely unknown. The present study performed re-sequencing and genome-wide variation analysis of three important representative restorer lines, namely, IR24, MH63, and SH527, using the Solexa sequencing technology. With the genomic sequence of the Indica cultivar 9311 as the reference, the following genetic features were identified: 267,383 single-nucleotide polymorphisms (SNPs), 52,847 insertion/deletion polymorphisms (InDels), and 3,286 structural variations (SVs) in the genome of IR24; 288,764 SNPs, 59,658 InDels, and 3,226 SVs in MH63; and 259,862 SNPs, 55,500 InDels, and 3,127 SVs in SH527. Variations between samples were also determined by comparative analysis of authentic collections of SNPs, InDels, and SVs, and were functionally annotated. Furthermore, variations in several important genes were also surveyed by alignment analysis in these lines. Our results suggest that genetic variations among these lines, although far lower than those reported in the landrace population, are greater than expected, indicating a complicated genetic basis for the phenotypic diversity of the restorer lines. Identification of genome-wide variation and pattern analysis among the restorer lines will facilitate future genetic studies and the molecular improvement of hybrid rice

    Rice-Map: a new-generation rice genome browser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concurrent release of rice genome sequences for two subspecies (<it>Oryza sativa </it>L. ssp. <it>japonica </it>and <it>Oryza sativa </it>L. ssp. <it>indica</it>) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively.</p> <p>Description</p> <p>More than one hundred annotation tracks (81 for <it>japonica </it>and 82 for <it>indica</it>) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria.</p> <p>Conclusions</p> <p>Rice-Map delivers abundant up-to-date <it>japonica </it>and <it>indica </it>annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at <url>http://www.ricemap.org/</url>, with all data available for free downloading.</p

    Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5 : probing the roles of system-specific accessory proteins

    Get PDF
    A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems

    Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin

    Get PDF
    A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments
    corecore