4 research outputs found

    Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications

    No full text
    In this paper, we have proposed a polymer-based photonic crystal (PhC) resonator, with multiple sizes of cavities, and a waveguide to be used as highly sensitive optical sensor components. Properties of the proposed PhC were simulated by the finite-difference time-domain method, and the polymer-based PhC resonator and waveguide were fabricated on a photoresist (polymer) by electron beam lithography, which was prepared on an Au-layer-deposited Si substrate. We detected the resonant light that penetrated through the waveguide and was trapped in the PhC resonator. Optical characteristics of the fabricated PhC were evaluated by detecting the polymer layer deposition process by using the layer-by-layer (LbL) method to deposit polymer layers. As a result, by using an optimized design of a polymer-based PhC resonator with a long cavity (equivalent to a defect of three holes), the PhC structure changes caused by LbL deposition lead to changes in resonant light wavelength (peak shift: 5.26 nm/layer). Therefore, we suggest that a PhC resonator and a waveguide is applicable as an optical sensor

    Evidence of sperm removal behaviour in an externally fertilizing species and compensatory behaviour for the risk of self-sperm removal

    Get PDF
    The removal of rival sperm from a female\u27s sperm storage organ acts as a strong sperm competition avoidance mechanism, which has been reported only in internally fertilizing species and not at all in externally fertilizing species. This study demonstrated for the first time that nest-holding males of Bathygobius fuscus, an externally fertilizing marine fish, remove the sperm of rival sneaker males from the spawning nest by exhibiting tail-fanning behaviour within the nest. Males showed tail-fanning behaviour when semen was artificially injected into the nest but not when seawater was injected, and in open nests this behaviour resulted in higher paternity rates for the focal male. The sperm removal behaviour entails the risk of removing their own sperm; therefore, additional sperm release behaviour is likely necessary to benefit from the sperm removal effect. Consistent with this, males increased post-fanning sperm release behaviour more in the semen than in the seawater injection treatment. Moreover, males who had removed sperm for a longer time spent more time releasing sperm after the removal, suggesting that the additional sperm release behaviour compensated for the loss of their own sperm. These results suggest that sperm removal behaviour is not restricted to internally fertilizing organisms and deserves further investigation in this and other species

    Plasticized Poly(vinyl chloride)-Based Photonic Crystal for Ion Sensing

    No full text
    In this study, we, for the first time, developed a plasticized poly­(vinyl chloride) (PVC)-based two-dimensional photonic crystal (2D-PhC) optical sensor using nanoimprint lithography (NIL), which can perform highly sensitive, fast, and selective ion sensing based on ion extraction. Concerning the principle of response, present plasticized PVC-based PhC works as a waveguide and a grating. Incident light was guided in the bulk of plasticized PVC and, then, guided light of a specific wavelength was diffracted by a periodic nanostructure. The guided and diffracted light intensity changes of PVC-based PhCs possessing various thicknesses were monitored at 580 nm; then, we found that the 0.35 μm-thick PhC film exhibited the highest diffraction intensity. For the ion-sensing application, potassium-selective sensing elements involving potassium ionophore and lipophilic dye were dissolved in a plasticized PVC-based PhC, and the K<sup>+</sup>-selective response was successfully observed by monitoring the diffracted peak intensity change. The present 2D-PhC optical sensor exhibited a fast response within 5 s (95% response time) due to the use of thin film, and sensitivity was 20 times higher than that of a PVC plane-film optical sensor, due to efficient collection of diffracted light by employing a periodic nanostructure of the photonic crystal
    corecore