549 research outputs found

    Random matrix models with log-singular level confinement: method of fictitious fermions

    Full text link
    Joint distribution function of N eigenvalues of U(N) invariant random-matrix ensemble can be interpreted as a probability density to find N fictitious non-interacting fermions to be confined in a one-dimensional space. Within this picture a general formalism is developed to study the eigenvalue correlations in non-Gaussian ensembles of large random matrices possessing non-monotonic, log-singular level confinement. An effective one-particle Schroedinger equation for wave-functions of fictitious fermions is derived. It is shown that eigenvalue correlations are completely determined by the Dyson's density of states and by the parameter of the logarithmic singularity. Closed analytical expressions for the two-point kernel in the origin, bulk, and soft-edge scaling limits are deduced in a unified way, and novel universal correlations are predicted near the end point of the single spectrum support.Comment: 13 pages (latex), Presented at the MINERVA Workshop on Mesoscopics, Fractals and Neural Networks, Eilat, Israel, March 199

    Entanglement and nonclassicality for multi-mode radiation field states

    Full text link
    Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multi-mode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beamsplitters, in a transparent manner. For single mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beamsplitter, these conditions turn exactly into signatures of NPT entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two--mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beamsplitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three--mode beamsplitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.Comment: Latex, 46 page

    Maximum entropy and the problem of moments: A stable algorithm

    Full text link
    We present a technique for entropy optimization to calculate a distribution from its moments. The technique is based upon maximizing a discretized form of the Shannon entropy functional by mapping the problem onto a dual space where an optimal solution can be constructed iteratively. We demonstrate the performance and stability of our algorithm with several tests on numerically difficult functions. We then consider an electronic structure application, the electronic density of states of amorphous silica and study the convergence of Fermi level with increasing number of moments.Comment: 4 pages including 3 figure

    Two-band random matrices

    Full text link
    Spectral correlations in unitary invariant, non-Gaussian ensembles of large random matrices possessing an eigenvalue gap are studied within the framework of the orthogonal polynomial technique. Both local and global characteristics of spectra are directly reconstructed from the recurrence equation for orthogonal polynomials associated with a given random matrix ensemble. It is established that an eigenvalue gap does not affect the local eigenvalue correlations which follow the universal sine and the universal multicritical laws in the bulk and soft-edge scaling limits, respectively. By contrast, global smoothed eigenvalue correlations do reflect the presence of a gap, and are shown to satisfy a new universal law exhibiting a sharp dependence on the odd/even dimension of random matrices whose spectra are bounded. In the case of unbounded spectrum, the corresponding universal `density-density' correlator is conjectured to be generic for chaotic systems with a forbidden gap and broken time reversal symmetry.Comment: 12 pages (latex), references added, discussion enlarge

    Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    Full text link
    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.Comment: 16 pages including 6 figure

    Inverting the Sachs-Wolfe Formula: an Inverse Problem Arising in Early-Universe Cosmology

    Get PDF
    The (ordinary) Sachs-Wolfe effect relates primordial matter perturbations to the temperature variations δT/T\delta T/T in the cosmic microwave background radiation; δT/T\delta T/T can be observed in all directions around us. A standard but idealised model of this effect leads to an infinite set of moment-like equations: the integral of P(k)j2(ky)P(k) j_\ell^2(ky) with respect to k (0<k<0<k<\infty) is equal to a given constant, CC_\ell, for =0,1,2,...\ell=0,1,2,.... Here, P is the power spectrum of the primordial density variations, jj_\ell is a spherical Bessel function and y is a positive constant. It is shown how to solve these equations exactly for ~P(k)P(k). The same solution can be recovered, in principle, if the first ~m equations are discarded. Comparisons with classical moment problems (where j2(ky)j_\ell^2(ky) is replaced by kk^\ell) are made.Comment: In Press Inverse Problems 1999, 15 pages, 0 figures, Late

    Generating Converging Bounds to the (Complex) Discrete States of the P2+iX3+iαXP^2 + iX^3 + i\alpha X Hamiltonian

    Full text link
    The Eigenvalue Moment Method (EMM), Handy (2001), Handy and Wang (2001)) is applied to the HαP2+iX3+iαXH_\alpha \equiv P^2 + iX^3 + i\alpha X Hamiltonian, enabling the algebraic/numerical generation of converging bounds to the complex energies of the L2L^2 states, as argued (through asymptotic methods) by Delabaere and Trinh (J. Phys. A: Math. Gen. {\bf 33} 8771 (2000)).Comment: Submitted to J. Phys.

    A Convergent Method for Calculating the Properties of Many Interacting Electrons

    Full text link
    A method is presented for calculating binding energies and other properties of extended interacting systems using the projected density of transitions (PDoT) which is the probability distribution for transitions of different energies induced by a given localized operator, the operator on which the transitions are projected. It is shown that the transition contributing to the PDoT at each energy is the one which disturbs the system least, and so, by projecting on appropriate operators, the binding energies of equilibrium electronic states and the energies of their elementary excitations can be calculated. The PDoT may be expanded as a continued fraction by the recursion method, and as in other cases the continued fraction converges exponentially with the number of arithmetic operations, independent of the size of the system, in contrast to other numerical methods for which the number of operations increases with system size to maintain a given accuracy. These properties are illustrated with a calculation of the binding energies and zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain, which is compared with analytic results for this system and extrapolations from finite rings of spins.Comment: 30 pages, 4 figures, corrected pd

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Pertussis infection in fully vaccinated children in day-care centers, Israel.

    Get PDF
    We tested 46 fully vaccinated children in two day-care centers in Israel who were exposed to a fatal case of pertussis infection. Only two of five children who tested positive for Bordetella pertussis met the World Health Organization's case definition for pertussis. Vaccinated children may be asymptomatic reservoirs for infection
    corecore