21 research outputs found

    The C-terminal domain of glyceraldehyde 3-phosphate dehydrogenase plays an important role in suppression of tRNALys3 packaging into human immunodeficiency virus type-1 particles

    Get PDF
    AbstractHuman immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNALys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNALys3. Although the binding of GAPDH to Pr55gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55gag. In this study, we show that Asp256, Lys260, Lys263 and Glu267 of GAPDH are important for the suppression of tRNALys3 packaging. Yeast two-hybrid analysis demonstrated that the C-terminal domain of GAPDH (151–335) interacts with both the matrix region (MA; 1–132) and capsid N-terminal domain (CA-NTD; 133–282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C-terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNALys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp256, Lys260, Lys263 and Glu267 of GAPDH is essential for the mechanism of tRNALys3-packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNALys3 packaging

    Novel strategy for anti-HIV-1 action: selective cytotoxic effect of N-myristoyltransferase inhibitor on HIV-1-infected cells

    Get PDF
    AbstractN-myristoyltransferase (NMT) is essential for the survival of eukaryotes and the production of infectious human immunodeficiency virus type-1(HIV-1) by the host cell. In this study, we found decreases in the mRNA levels of human NMT isoforms and the NMT activities in the course of HIV-1 infection in the human T-cell line, CEM. Investigating the cytotoxic effect of the novel synthetic NMT inhibitors on the chronic HIV-1 infected T-cell line, CEM/LAV-1, and the uninfected CEM, revealed that the cytotoxic effect was significantly selective for CEM/LAV-1. This was thought to be due to the difference between the NMT levels of the cell lines. In this paper, we propose that NMT may be a candidate target for anti-HIV-1-infected-cell agents

    Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection

    No full text
    Abstract Background Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. Results In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNALys3 into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNALys3 into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55gag and p160gag-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood mononuclear cells (PBMCs). Conclusions These findings indicate that GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection.</p

    Three Isoforms of Cyclophilin A Associated with Human Immunodeficiency Virus Type 1 Were Found by Proteomics by Using Two-Dimensional Gel Electrophoresis and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    No full text
    Human immunodeficiency virus type 1 (HIV-1) strain LAV-1 (HIV-1(LAV-1)) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified HIV-1(LAV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained. The 2D gel electrophoresis image suggested that 24 proteins can be identified inside the virion. Furthermore, the stained protein spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Peptide mass fingerprinting data suggested that two isoforms of cyclophilin A (CyPA), one with an isoelectric point (pI) of 6.40 and one with a pI of 6.53, are inside the viral membrane; that another isoform, with a pI of 6.88, is outside the viral membrane; and that the CyPA isoform with a pI of 6.53 is N acetylated. The mechanisms that permit the redistribution of CyPA on the viral surface have not yet been clarified, but it is surmised that the CyPA isoform with a pI of 6.88 may play a critical role in the attachment of virions to the surface of target cells and that both CyPA isoforms with pIs of 6.40 and 6.53 may regulate the conformation of the HIV-1 capsid protein

    Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants

    No full text
    Abstract Background Lifestyle-related diseases such as diabetes are steadily increasing worldwide. In Sudan, there are a variety of plant species used traditionally for the treatment of diabetes, obesity and other symptoms which need to be validated through scientific studies for their claimed traditional uses. Therefore, in the current study, the free radical scavenging activity, α-glucosidase inhibitory and pancreatic lipase inhibitory activities of 70% ethanol and water extracts of eighteen Sudanese medicinal plants were investigated using various in vitro assays. Moreover, the cytotoxicity and genotoxicity were assessed for the bioactive plant extracts. Methods Eighteen plants were selected on the basis of their traditional uses and extracted with 70% ethanol and water to obtain thirty-six extracts. The obtained extracts were screened using different in vitro bioassays namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, α-glucosidase inhibitory and pancreatic lipase inhibitory assays. Furthermore, the active plant extracts were investigated for their cytotoxicity and genotoxicity on HeLa cell line using HCS DNA Damage Assay. Results Both 70% ethanol and water extracts of Acacia nilotica, Ziziphus spina-christi, Abrus precatorius, and Geigeria alata along with the 70% ethanol extract of Martynia annua showed potent free radical scavenging activity. Regarding the α-glucosidase inhibition assay, both extracts of Acacia nilotica, Ziziphus spina-christi, Geigeria alata, and Cyperus rotundus showed potent activity. In general, 70% ethanol extracts were more potent compared to water extracts with exception of Cordia sinensis and Cymbopogon proximus, for which water extracts also showed potent enzyme inhibitory activity. Similarly, water extracts of Acacia nilotica and Ziziphus spina-christi showed potent inhibitory activity against pancreatic lipase enzyme. Some of the extracts also showed significant genotoxicity and cytotoxicity at the concentration range used for bioactivities. Conclusion The extracts of Acacia nilotica, Ziziphus spina-christi, Geigeria alata, Martynia annua and Abrus precatorius exhibited an appreciable range of activity on antioxidant and enzyme inhibitory assays

    Self-Assembly PEGylation Retaining Activity (SPRA) Technology via a Host–Guest Interaction Surpassing Conventional PEGylation Methods of Proteins

    No full text
    Polyethylene glycol (PEG) modification (PEGylation) is one of the best approaches to improve the stabilities and blood half-lives of protein drugs; however, PEGylation dramatically reduces the bioactivities of protein drugs. Here, we present “self-assembly PEGylation retaining activity” (SPRA) technology via a host–guest interaction between PEGylated β-cyclodextrin (PEG-β-CyD) and adamantane-appended (Ad) proteins. PEG-β-CyD formed stable complexes with Ad-insulin and Ad-lysozyme to yield SPRA-insulin and SPRA-lysozyme, respectively. Both SPRA-proteins showed high stability against heat and trypsin digest, comparable with that of covalently PEGylated protein equivalents. Importantly, the SPRA-lysozyme possessed ca. 100% lytic activity, whereas the activity of the covalently PEGylated lysozyme was ca. 23%. Additionally, SPRA-insulin provided a prolonged and peakless blood glucose profile when compared with insulin glargine. It also showed no loss of activity. In contrast, the covalently PEGylated insulin showed a negligible hypoglycemic effect. These findings indicate that SPRA technology has potential as a generic method, surpassing conventional PEGylation methods for proteins

    A Homozygous CASQ2 Mutation in a Japanese Patient with Catecholaminergic Polymorphic Ventricular Tachycardia

    No full text
    A 62-year-old female had suffered from recurrent syncopal episodes triggered by physical and emotional stress since childhood. She had no family history of sudden death. An intensive examination could not detect any structural disease, and exercise stress testing provoked polymorphic ventricular ectopy followed by polymorphic ventricular tachycardia accompanied with syncope leading to a diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT). A genetic analysis with a next generation sequencer identified a homozygous W361X mutation in the CASQ2 gene. Careful history taking disclosed that her parents had a consanguineous marriage. Here we present a Japanese patient with a recessive form of CPVT
    corecore