12 research outputs found

    Energy efficiency of a variable speed of the centralized air conditioning system using PID controller

    Get PDF
    PID control system for air-conditioning system in residence is presented in this manuscript. The control strategy is focused on low energy consumption and thermal comfort for indoor user. The algorithm is developed to control the compressor speed at an appropriate speed according to the temperature inside the controlled area using PID controller. Software is developed to measure and interface the system with controlling the system according to the algorithm. The temperature settings are 20, 22 and 24°C with internal heat load of 0 and 1000 Watt. The results obtained proved that the technique can lower the energy consumption and increased temperature control for better thermal comfort compared to on/off controller

    Taguchi method for development of mass flow rate correlation using hydrocarbon refrigerant mixture in capillary tube

    Get PDF
    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature

    Taguchi Method for Development of Mass Flow Rate Correlation Using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Full text link
    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature

    Improved refrigerant characteristics flow predictions in adiabatic capillary tube

    Get PDF
    This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube

    Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube

    No full text
    Abstract: This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube

    Mathematical Modeling of Solar Photovoltaic Module to generate Maximum Power Using Matlab/Simulink

    Get PDF
    Modeling is a basic tool of the real system simulation in translating the Mathematical results into real life. In this study, the Modeling and simulation of photovoltaic Module type PS-P310-36 were developed, and maximum power was obtained. The output I – V and P – V curves of the model were studied and analyzed under different irradiance (200 W/m2, 400 W/m, 600 W/m2, 800 W/m, and 1000 W/m2) at a constant temperature of 25oC. The model attained maximum power of 308, 251.6, 191.4, 129.2, and 64.74 W at 1000, 800, 600, 400, and 200 W/m2 irradiance, respectively. The model results agreed with the characteristics curves of the PV module of previous similar PV studies. The proposed model will serve as quick tools for designers in obtaining the maximum power of PV at distinct irradiance. However, for a more accurate design, more information is needed

    Empirical correlations for sizing adiabatic capillary tubes using conventional refrigerants and their alternatives

    No full text
    This paper presents new empirical correlations developed by using conventional and alternative refrigerants for determining the size of adiabatic capillary tubes used in small vapor compression refrigeration systems. A homogenous two-phase flow model based on the principal equations of conservation of mass, momentum, and energy has been developed. Colebrook's and Churchill's formulations were used to determine the single-phase friction factor. Also, the two-phase viscosity models of Cicchitti et al. (1960), Dukler et al. (1964), McAdam et al. (1942), and Lin et al. (1991) were used to determine the two-phase viscosity factor. The developed numerical model that takes account of a metastable process to enhance the model was validated by using experimental data from the literature with an average error of 1.75%. This developed model that had not been employed previously by researchers was used to study the effects of relevant parameters on the capillary tube length. From these effects, empirical correlations of the capillary tube length with these dependent variables have been developed. Comparing the empirical models with experimental data from the literature showed a reasonable agreement with an average error of 3.45%. Though the empirical model developed in this study covers a large set of refrigerants, it should be used with caution by considering the range of operating conditions covered

    New empirical correlations for sizing adiabatic capillary tubes in refrigeration systems

    No full text
    This paper presents new empirical correlations that have been developed for sizing adiabatic capillary tubes used in small vapor compression refrigeration and air-conditioning systems. A numerical model which is based on the basic equations of conservation of mass, momentum and energy was developed. Colebrook's formulation was used to determine the single phase friction factor. The two-phase viscosity models - Cicchitti et al., Dukler et al. and McAdam et al. were used based on the recommendation from literature to determine the two-phase viscosity factor. The developed numerical model was validated using the experimental data from literature. The numerical model was used to study the effects of relevant parameters on capillary tube length and the results showed that the length of capillary tube increase with increase in condensing temperature, subcooling, and inner diameter of tube but decrease with increase in surface roughness and mass flow rate. Thereafter, empirical correlation of the capillary tube length with the five dependent variables was presented. The empirical models are validated using experimental data from literature. Different from the previous studies, the empirical models have a large set of refrigerants and wide operating conditions. The developed correlation can be used as an effective tool for sizing adiabatic capillary tube with system models working with alternative refrigerants

    Investigation of various mixtures of hc290/hc600 refrigerants in adiabatic capillary tube used in split-type air-conditioner

    No full text
    According to Montreal Protocol, HCFC22 (hydro chlorofluorocarbon), a commonly used refrigerant in domestic refrigeration and air-conditioner, must be phased out owing to its environmental problem. Several natural substances including ammonia, carbon dioxide, water and hydrocarbon (HC) such as propane (HC290) and butane (HC600) and their mixtures have immerged as close substitute. Literature showed that pure HC refrigerant may not be suitable enough because of the difference in operating pressure and volumetric cooling capacity when compared with HCFC22. The main objective of this study is to theoretically investigate different ratios of HC refrigerants HC290/HC600 mixtures flowing through adiabatic capillary tube using homogenous model. In this study, the percentage by volume of HC290 was varied from 30 to 40 % in a step of 5%. The pressure at the two extreme ends and temperature along the capillary tube, using HCFC22 refrigerant, which was used as benchmark, was experimentally determined in the air-conditioning (AC) system. Comparing the model results with the experimental data showed that HC refrigerants HC290/HC600 in ratio 35%/65% gave 2.95% minimum error and thus it can be used as a substitute to HCFC22 in the split-type AC system

    Empirical correlations for sizing adiabatic capillary tube using LPG as refrigerant in split-type air-conditioner

    No full text
    This paper presents correlations for sizing adiabatic capillary tubes which serves as an expansion device in split-type air-conditioner with LPG, novel hydrocarbon (HC) mixtures of butane (HC600) and propane (HC290) as refrigerant. A homogenous two-phase flow model developed by the authors and also experimental investigation of the Liquified Petroluem Gas (LPG) refrigerant flow in adiabatic capillary tubes were used in this study. The theoretical model was used to assess various percentage compositions of these HC mixtures and validated with the experimental data. For each HC refrigerant mixture, correlations for sizing adiabatic capillary tube which contains the relevant factors, viz. capillary tube inner diameter, inlet pressure, refrigerant mass flow rate, capillary tube surface roughness and capillary tube inlet subcooling was developed. The proposed correlations were compared with the authors measured data and found to be in good agreement. Further validation was made by comparing the mass flow rates predictions of the correlations with experimental data of previous studies and found that these correlations are consistent. The correlations can be used in small vapour compression refrigeration systems working with the HC refrigerant mixtures for practical design and optimization
    corecore