3 research outputs found

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Amplitude and frequency variability of the pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 observed with the Whole Earth Telescope

    No full text
    WOS: 000182039700036We have acquired new time series photometry of the two pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 with the Whole Earth Telescope. Additional single-site photometry is also presented. We use all these data plus all available archival measurements to study the temporal behaviour of the pulsational amplitudes and frequencies of these stars for the first time. We demonstrate that both KUV 05134+2605 and PG 1654+160 pulsate in many modes, the amplitudes of which are variable in time; some frequency variability of PG 1654+160 is also indicated. Beating of multiple pulsation modes cannot explain our observations; the amplitude variability must therefore be intrinsic. We cannot find stable modes to be used for determinations of the evolutionary period changes of the stars. Some of the modes of PG 1654+160 appear at the same periods whenever detected. The mean spacing of these periods (approximate to40 s) suggests that they are probably caused by non-radial gravity-mode pulsations of spherical degree l = 1. If so, PG 1654+160 has a mass around 0.6 M.. The time-scales of the amplitude variability of both stars (down to two weeks) are consistent with theoretical predictions of resonant mode coupling, a conclusion which might however be affected by the temporal distribution of our data

    Literatur

    No full text
    corecore