5 research outputs found

    Contraction and Intracellular Calcium Transport in Epicardial and Endocardial Ventricular Myocytes from Streptozotocin-Induced Diabetic Rat

    Get PDF
    Diabetes mellitus (DM) is a global health problem. According to the International Diabetes Federation, 424.9 million people suffered from DM in 2017 and this number is expected to rise to 628.6 million by 2045. Although diabetes can affect every organ in the body, cardiovascular disease is a major cause of death and disability in people with diabetes. Diabetic patients frequently suffer from systolic and diastolic dysfunction. Within the ventricles, the electromechanical properties of cardiac myocytes vary transmurally. The aim of this study was to investigate contraction and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) myocytes from the left ventricle in the streptozotocin (STZ)-induced diabetic rat heart. Experiments were performed 5–6 months after STZ treatment. Ventricular myocytes were isolated by enzymic and mechanical dispersal techniques from EPI and ENDO regions of the left ventricle. Contraction and free intracellular Ca2+ concentration (Ca2+)i were measured by video edge detection and fl uorescence photometry techniques, respectively. Myocyte length and calculated surface area were smaller in EPI-STZ compared to EPI-CON. Time to peak (TPK) shortening was prolonged in EPI-STZ compared to EPI-CON and in ENDO-STZ compared to ENDO-CON myocytes. Time to half (THALF) relaxation of shortening was prolonged in EPI-STZ compared to EPI-CON. TPK Ca2+ transient was prolonged in EPI-STZ compared to EPI-CON, ENDO-STZ compared to ENDO-CON, ENDO-STZ compared to EPI-STZ and in ENDO-CON compared to EPI-CON myocytes. THALF decay of the Ca2+ transient was prolonged in ENDO-STZ compared to ENDO-CON. Fractional release of Ca2+ was increased in ENDO-STZ compared to ENDO-CON and in ENDO-STZ compared to EPI-STZ. Recovery of the Ca2+ transient was prolonged in ENDO-STZ compared to ENDO-CON. In conclusion, the kinetics of contraction and Ca2+ transient, fractional release of Ca2+ from the sarcoplasmic reticulum are altered to different extents in EPI and ENDO myocytes from STZ-induced diabetic rat

    Contraction and Intracellular Calcium Transport in Epicardial and Endocardial Ventricular Myocytes from Streptozotocin-Induced Diabetic Rat

    Get PDF
    Introduction: Diabetes mellitus (DM) is a global health problem. According to the International Diabetes Federation, 424.9 million people suffered from DM in 2017 and this number is expected to rise to 628.6 million by 2045. Although diabetes can affect every organ in the body, cardiovascular disease is a major cause of death and disability in people with diabetes. Diabetic patients frequently suffer from systolic and diastolic dysfunction. Within the ventricles, the electromechanical properties of cardiac myocytes vary transmurally. Aims and Objectives: The aim of this study was to investigate contraction and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) myocytes from the left ventricle in the streptozotocin (STZ) “ induced diabetic rat heart. Materials and Methods: Experiments were performed 5-6 months after STZ treatment. Ventricular myocytes were isolated by enzymic and mechanical dispersal techniques from EPI and ENDO regions of the left ventricle. Contraction and free intracellular Ca2+ concentration [Ca2+]i were measured by video edge detection and fluorescence photometry techniques, respectively. Results: Myocyte length and calculated surface area were smaller in EPI-STZ compared to EPI-CON. Time to peak (TPK) shortening was prolonged in EPI-STZ compared to EPI-CON and in ENDO-STZ compared to ENDO-CON myocytes. Time to half (THALF) relaxation of shortening was prolonged in EPI-STZ compared to EPI-CON. TPK Ca2+ transient was prolonged in EPI-STZ compared to EPI-CON, ENDO-STZ compared to ENDO-CON, ENDO-STZ compared to EPI-STZ and in ENDO-CON compared to EPI-CON myocytes. THALF decay of the Ca2+ transient was prolonged in ENDO-STZ compared to ENDO-CON. Fractional release of Ca2+ was increased in ENDO-STZ compared to ENDO-CON and in ENDO-STZ compared to EPI-STZ. Recovery of the Ca2+ transient was prolonged in ENDO-STZ compared to ENDO-CON. Conclusion: In conclusion the kinetics of contraction and Ca2+ transient and fractional release of Ca2+ from the sarcoplasmic reticulum are altered to different extents in EPI and ENDO myocytes from STZ-induced diabetic rat

    Effects of prolactin on ventricular myocyte shortening and calcium transport in the streptozotocin-induced diabetic rat

    Get PDF
    © 2020 Cardiology; Cell biology; Endocrinology; Molecular Biology; Pathophysiology; Pharmacology; Physiology; prolactin; Diabetes mellitus; heart; Ventricular myocytes; Contraction; Calciu

    Cell shortening and calcium dynamics in epicardial and encocardial myocytes from the left ventricle of the Goto-Kalizaki type 2 diabetic rats

    Get PDF
    Diabetic cardiomyopathy is considered as one of the major diabetes-associated complications and the pathogenesis of cardiac dysfunction is not well understood. The electromechanical properties of cardiac myocytes vary across the walls of the chambers The aim of this study was to investigate shortening and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) left ventricular myocytes in the Goto-Kakizaki (GK) type 2 diabetic rat heart. Shortening and intracellular Ca2+ transients were measured by video edge detection and fluorescence photometry. Myocyte surface area was increased in EPI-GK and ENDO-GK compared to EPI-CON and ENDO-CON myocytes. Time to peak (TPK) shortening was prolonged in EPI-GK compared to EPI-CON and in ENDO-CON compared to EPI-CON myocytes. Time to half (THALF) relaxation of shortening was prolonged in EPI-GK compared to EPI-CON myocytes. TPK Ca2+ transient was prolonged in EPI-GK compared to EPI-CON myocytes. THALF decay of the Ca2+ transient was prolonged in EPI-CON compared to EPI-GK and in EPI-CON compared to ENDO-CON myocytes. Amplitude of shortening and the Ca2+ transient were unaltered in EPI-GK and ENDO-GK compared to their respective controls. Sarcoplasmic reticulum Ca2+ and myofilament sensitivity to Ca2+ were unaltered in EPI-GK and ENDO-GK compared to their respective controls. Regional differences in Ca2+ signaling in healthy and diabetic myocytes may account for variation in the dynamics of myocyte shortening. Further studies will be required to clarify the mechanisms underlying regional differences in the time course of shortening and the Ca2+ transient in EPI and ENDO myocytes from diabetic and control hearts

    Voltage dependence of the Ca2+ transient in endocardial and epicardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats

    Get PDF
    Diabetes mellitus is a major global health disorder and, currently, over 450 million people have diabetes with 90% suffering from type 2 diabetes. Left untreated, diabetes may lead to cardiovascular diseases which are a leading cause of death in diabetic patients. Calcium is the trigger and regulator of cardiac muscle contraction and derangement in cellular Ca2+ homeostasis, which can result in heart failure and sudden cardiac death. It is of paramount importance to investigate the regional involvement of Ca2+ in diabetes-induced cardiomyopathy. Therefore, the aim of this study was to investigate the voltage dependence of the Ca2+ transients in endocardial (ENDO) and epicardial (EPI) myocytes from the left ventricle of the Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes mellitus. Simultaneous measurement of L-type Ca2+ currents and Ca2+ transients was performed by whole-cell patch clamp techniques. GK rats displayed significantly increased heart weight, heart weight/body weight ratio, and non-fasting and fasting blood glucose compared to controls (CON). Although the voltage dependence of L-type Ca2+ current was unaltered, the voltage dependence of the Ca2+ transients was reduced to similar extents in EPI-GK and ENDO-GK compared to EPI-CON and ENDO-CON myocytes. TPK L-type Ca2+ current and Ca2+ transient were unaltered. THALF decay of L-type Ca2+ current was unaltered; however, THALF decay of the Ca2+ transient was shortened in ENDO and EPI myocytes from GK compared to CON rat hearts. In conclusion, the amplitude of L-type Ca2+ current was unaltered; however, the voltage dependence of the Ca2+ transient was reduced to similar extents in EPI and ENDO myocytes from GK rats compared to their respective controls, suggesting the possibility of dysfunctional sarcoplasmic reticulum Ca2+ transport in the GK diabetic rat hearts
    corecore