40 research outputs found

    Dasatinib response in acute myeloid leukemia is correlated with FLT3/ITD, PTPN11 mutations and a unique gene expression signature

    Get PDF
    Novel targeted therapies demonstrate improved survival in specific subgroups (defined by genetic variants) of acute myeloid leukemia (AML) patients, validating the paradigm of molecularly targeted therapy. However, identifying correlations between AML molecular attributes and effective therapies is challenging. Recent advances in high-throughput in vitro drug sensitivity screening applied to primary AML blasts were used to uncover such correlations; however, these methods cannot predict the response of leukemic stem cells (LSCs). Our study aimed to predict in vitro response to targeted therapies, based on molecular markers, with subsequent validation in LSCs. We performed ex vivo sensitivity screening to 46 drugs on 29 primary AML samples at diagnosis or relapse. Using unsupervised hierarchical clustering analysis we identified group with sensitivity to several tyrosine kinase inhibitors (TKIs), including the multi-TKI, dasatinib, and searched for correlations between dasatinib response, exome sequencing and gene expression from our dataset and from the Beat AML dataset. Unsupervised hierarchical clustering analysis of gene expression resulted in clustering of dasatinib responders and non-responders. In vitro response to dasatinib could be predicted based on gene expression (AUC=0.78). Furthermore, mutations in FLT3/ITD and PTPN11 were enriched in the dasatinib sensitive samples as opposed to mutations in TP53 which were enriched in resistant samples. Based on these results, we selected FLT3/ITD AML samples and injected them to NSG-SGM3 mice. Our results demonstrate that in a subgroup of FLT3/ITD AML (4 out of 9) dasatinib significantly inhibits LSC engraftment. In summary we show that dasatinib has an anti-leukemic effect both on bulk blasts and, more importantly, LSCs from a subset of AML patients that can be identified based on mutational and expression profiles. Our data provide a rational basis for clinical trials of dasatinib in a molecularly selected subset of AML patients

    Ashkenazi Jewish Centenarians Do Not Demonstrate Enrichment in Mitochondrial Haplogroup J

    Get PDF
    BACKGROUND: Association of mitochondrial haplogroup J with longevity has been reported in several population subgroups. While studies from northern Italy and Finland, have described a higher frequency of haplogroup J among centenarians in comparison to non-centenarian, several other studies could not replicate these results and suggested various explanations for the discrepancy. METHODOLOGY/PRINCIPAL FINDINGS: We have evaluated haplogroup frequencies among Ashkenazi Jewish centenarians using two different sets of matched controls. No difference was observed in the haplogroup J frequencies between the centenarians or either matched control group, despite adequate statistical power to detect such a difference. Furthermore, the lack of association was robust to population substructure in the Ashkenazi Jewish population. Given this discrepancy with the previous reported associations in the northern Italian and the Finnish populations, we conducted re-analysis of these previously published data, which supported one of several possible explanations: i) inadequate matching of cases and controls; ii) inadequate adjustment for multiple comparison testing; iii) cryptic population stratification. CONCLUSIONS/SIGNIFICANCE: There does not exist a universal association of mitochondrial haplogroup J with longevity across all population groups. Reported associations in specialized populations may reflect genetic or other interactions specific to those populations or else cryptic confounding influences, such as inadequate matching attributable to population substructure, which are of general relevance to all studies of the possible association of mitochondrial DNA haplogroups with common complex phenotypes

    The Druze: A Population Genetic Refugium of the Near East

    Get PDF
    BACKGROUND: Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization. PRINCIPAL FINDINGS: We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations. CONCLUSIONS: These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age

    Prediction of acute myeloid leukaemia risk in healthy individuals

    Get PDF
    The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure(1). The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion(2,3). However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)(4-8). Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention

    Evolutionary trajectory of leukemic clones and its clinical implications

    No full text

    Molecular Epidemiological Analysis of the Changing Nature of a Meningococcal Outbreak following a Vaccination Campaign

    No full text
    A serogroup C meningococcal outbreak that occurred in an Israeli Arab village led to a massive vaccination campaign. During the subsequent 18 months, new cases of type B Neisseria meningitidis infection were revealed. To investigate the influence of vaccination on bacteriological epidemiology, bacteria were isolated from individuals at the outbreak location, patients with several additional other sporadic cases, and patients involoved in another outbreak. Haploid bacterial genomic DNA was mixed with a consensus PCR product to form a heteroduplex state that enabled multilocus sequence typing (MLST) to be combined with denaturing high-performance liquid chromatography (DHPLC) for a novel high-throughput molecular typing method called MLST-DHPLC. A 100% correlation was found to exist between the sequencing by MLST alone and the MLST-DHPLC method. Independent molecular typing by repetitive extragenic palindromic PCR discriminated the neisserial clones as well as the MLST-DHPLC method did. The occurrence of type B N. meningitidis in the postvaccination period might be attributed to the selection pressure applied to the bacteria by vaccination, suggesting a possible unwarranted outcome of vaccination with the quadrivalent vaccine for control of a serogroup C meningococcal outbreak. This is the first time that DHPLC has been applied to the genotyping of bacteria, and it proved to be more efficient than MLST alone
    corecore