86 research outputs found

    Disorder-induced electron and hole trapping in amorphous TiO2

    Get PDF
    Thin films of amorphous (a)-TiO2 are ubiquitous as photocatalysts, protective coatings, photoanodes and in memory application, where they are exposed to excess electrons and holes. We investigate trapping of excess electrons and holes in the bulk of pure amorphous titanium dioxide, a-TiO2, using hybrid density functional theory (h-DFT) calculations. Fifty 270-atom a-TiO2 structures were produced using classical molecular dynamics and their geometries fully optimised using h-DFT simulations. They have the density, distribution of atomic coordination numbers and radial pair-distribution functions in agreement with experiment. The calculated average a-TiO2 band gap is 3.25 eV with no states splitting into the band gap. Trapping of excess electrons and holes in a-TiO2 is predicted at precursor sites, such as elongated Ti-O bonds. Single electron and hole polarons have average trapping energies (ET) of -0.4 eV and -0.8 eV, respectively. We also identify several types of electron and hole bipolaron states and discuss their stability. These results can be used for understanding the mechanisms of photo-catalysis and improving the performance of electronic devices employing a-TiO2 films.Comment: 12 pages, 10 figures. This article has been submitted to Physical Review

    Theories of scanning probe microscopes at the atomic scale

    Get PDF
    Significant progress has been made both in experimentation and in theoretical modeling of scanning probe microscopy. The theoretical models used to analyze and interpret experimental scanning probe microscope (SPM) images and spectroscopic data now provide information not only about the surface, but also the probe tip and physical changes occurring during the scanning process. The aim of this review is to discuss and compare the present status of computational modeling of two of the most popular SPM methods—scanning tunneling microscopy and scanning force microscopy—in conjunction with their applications to studies of surface structure and properties with atomic resolution. In the context of these atomic-scale applications, for the scanning force microscope (SFM), this review focuses primarily on recent noncontact SFM (NC-SFM) results. After a brief introduction to the experimental techniques and the main factors determining image formation, the authors consider the theoretical models developed for the scanning tunneling microscope (STM) and the SFM. Both techniques are treated from the same general perspective of a sharp tip interacting with the surface—the only difference being that the control parameter in the STM is the tunneling current and in the SFM it is the force. The existing methods for calculating STM and SFM images are described and illustrated using numerous examples, primarily from the authors' own simulations, but also from the literature. Theoretical and practical aspects of the techniques applied in STM and SFM modeling are compared. Finally, the authors discuss modeling as it relates to SPM applications in studying surface properties, such as adsorption, point defects, spin manipulation, and phonon excitation.Peer reviewe

    First principles study on the segregation of metallic solutes and non-metallic impurities in Cu grain boundary

    Full text link
    Metallic dopants have the potential to increase the mechanical strength of polycrystalline metals. These elements are expected to aggregate in regions of lower coordination, such as grain boundaries. At the grain boundaries, they can have a beneficial (toughening) or detrimental effect (e.g. grain boundary embrittlement). In this study, we employ Density Functional Theory (DFT) to compute the segregation energies of various metallic and other non-metallic elements to determine their effect when introduced in a symmetric Cu grain boundary. The study results may be used to qualitatively rank the beneficial effect of certain metallic elements, such as V, Zr, and Ag, as well as the strong weakening effect of non-metallic impurities like O, S, F and P. Furthermore, the induced local distortion is found to be proportional to the weakening effect of the elements

    Difference in Structure and Electronic Properties of Oxygen Vacancies in α-Quartz and α-Cristobalite Phases of SiO2

    Get PDF
    α-cristobalite (α-C) is a polymorph of silica, mainly found in space exploration and geochemistry research. Due to similar densities, α-C is often used as a proxy for amorphous SiO2, particularly in computer simulations of SiO2 surfaces and interfaces. However, little is known about the properties of α-C and its basic oxygen defects. Using density functional theory (DFT) simulations we provide a comprehensive report on the properties of perfect structure and oxygen vacancies in α-C. The calculated properties of α-C are compared with those of the better-characterized α-quartz (α-Q). Our results demonstrated that the positively charged O vacancy in α-C is most stable in the dimer configuration, in contrast to α-Q, which favors the puckered configuration. A back-projected configuration was also predicted in both polymorphs. We calculated the optical transition energies and isotropic hyperfine constants for O vacancies in both α-Q and α-C, and compared our findings with the results of previous studies and experiments. This work, thus, offers one of the first in-depth investigations of the properties of oxygen vacancies in α-C

    Efficient parametrization of complex molecule-surface force fields

    Get PDF
    We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA) methods to optimize the large parameter sets needed to describe such systems. The derived potentials are able to well reproduce adsorption geometries and adsorption energies calculated using density functional theory. Finally, we discuss the challenges in creating a sufficient fitting library, determining whether or not the GA optimization has completed, and the transferability of such force fields to similar molecules. © 2015 Wiley Periodicals, Inc

    Nature of intrinsic and extrinsic electron trapping in SiO 2

    Get PDF
    Using classical and ab initio calculations we demonstrate that extra electrons can be trapped in pure crystalline and amorphous SiO2 (a-SiO2) in deep band gap states. The structure of trapped electron sites in pure a-SiO2 is similar to that of Ge electron centers and so-called [SiO4/Li]0 centers in α quartz. Classical potentials were used to generate amorphous silica models and density functional theory to characterize the geometrical and electronic structures of trapped electrons in crystalline and amorphous silica. The calculations demonstrate that an extra electron can be trapped at a Ge impurity in α quartz in six different configurations. An electron in the [SiO4/Li]0 center is trapped on a regular Si ion with the Li ion residing nearby. Extra electrons can trap spontaneously on pre-existing structural precursors in amorphous SiO2, while the electron self-trapping in α quartz requires overcoming a barrier of about 0.6 eV. The precursors for electron trapping in amorphous SiO2 comprise wide (≥132∘) O–Si–O angles and elongated Si–O bonds at the tails of corresponding distributions. Using this criterion, we estimate the concentration of these electron trapping sites at ≈4×1019 cm−3

    Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface

    Get PDF
    By combining experimental dynamic scanning force microscope (SFM) images of the CaF2(111) surface with an extensive theoretical modeling, we demonstrate that the two different contrast patterns obtained reproducibly on this surface can be clearly explained in terms of the change of the sign of the electrostatic potential at the tip end. We also present direct theoretical simulations of experimental dynamic SFM images of an ionic surface at different tip-surface distances. Experimental results demonstrate a qualitative transformation of the image pattern, which is fully reproduced by the theoretical modeling and is related to the character of tip-induced displacements of the surface atoms. The modeling of the image transformation upon a systematic reduction of the tip-surface distance with ionic tips allows an estimate of the tip-surface distance present in experiment, where 0.28–0.40 nm is found to be optimal for stable imaging with well-defined atomic contrast. We also compare the modeling with ionic tips to results for a pure silicon tip. This comparison demonstrates that a silicon tip can yield only one type of image contrast and that the tip-surface interaction is not strong enough to explain the image contrast observed experimentally. The proposed interpretation of two types of images for the CaF2(111) surface can also be used to determine the chemical identity of imaged features on other surfaces with similar structure.Peer reviewe

    Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations

    Get PDF
    Using ab initio calculations we demonstrate that extra electrons in pure amorphous SiO2 can be trapped in deep band gap states. Classical potentials were used to generate amorphous silica models and density functional theory to characterise the geometrical and electronic structures of trapped electrons. Extra electrons can trap spontaneously on pre-existing structural precursors in amorphous SiO2 and produce ≈≈3.2 eV deep states in the band gap. These precursors comprise wide (⩾⩾130°°) O–Si–O angles and elongated Si–O bonds at the tails of corresponding distributions. The electron trapping in amorphous silica structure results in an opening of the O–Si–O angle (up to almost 180°°). We estimate the concentration of these electron trapping sites to be View the MathML source≈5×1019cm-3

    Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals

    Full text link
    We discuss the adiabatic self-trapping of small polarons within the density functional theory (DFT). In particular, we carried out plane-wave pseudo-potential calculations of the triplet exciton in NaCl and found no energy minimum corresponding to the self-trapped exciton (STE) contrary to the experimental evidence and previous calculations. To explore the origin of this problem we modelled the self-trapped hole in NaCl using hybrid density functionals and an embedded cluster method. Calculations show that the stability of the self-trapped state of the hole drastically depends on the amount of the exact exchange in the density functional: at less than 30% of the Hartree-Fock exchange, only delocalized hole is stable, at 50% - both delocalized and self-trapped states are stable, while further increase of exact exchange results in only the self-trapped state being stable. We argue that the main contributions to the self-trapping energy such as the kinetic energy of the localizing charge, the chemical bond formation of the di-halogen quasi molecule, and the lattice polarization, are represented incorrectly within the Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
    • …
    corecore