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Abstract

We present an efficient scheme for parametrizing complex molecule-surface force

fields from ab initio data. The cost of producing a sufficient fitting library is mitigated

using a 2D periodic embedded slab model made possible by the quantum mechan-

ics/molecular mechanics (QM/MM) scheme in CP2K. These results were then used in

conjunction with genetic algorithm (GA) methods to optimize the large parameter sets

needed to describe such systems. The derived potentials are able to well reproduce ad-

sorption geometries and adsorption energies calculated using density functional theory

(DFT). Finally, we discuss the challenges in creating a sufficient fitting library, deter-

mining whether or not the GA optimization has completed, and the transferability of

such force fields to similar molecules.
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Introduction

The growth and self-assembly of organic molecules on insulating surfaces is of critical impor-

tance to many fields including catalysis,1 molecular electronics,2–4 and lubrication.5 While

ab initio methods can provide a wealth of information on the electronic structure of a system,

they are computationally expensive and are usually limited to small systems or ground state

calculations. Fortunately, an understanding of the dynamic properties and growth in such

systems can be achieved through the use of classical force fields and large scale molecular

dynamics (MD) simulations. However, a major challenge that arises is the lack of complete

classical interaction models for these kind of systems; the parametrization of such classical

models requires a significant investment of resources.

While many of the components that contribute to the full collection of interactions

needed to represent molecule-surface systems are readily available, some key contributions

are missing. Previous studies have shown that combining existing force fields using newly

parametrized contributions can provide a reasonable representation of the complete sys-

tem. Recently, Wright et al. parametrized molecule-surface force fields for small proteins on

Au(111) and Au(100) using ab initio data6,7 by incorporating existing protein force fields

and generic Au-Au parameters.

Since organic molecules can be described as combinations of elementary building blocks,
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several transferable force fields are available (CHARMM,8–10 AMBER,11 UFF,12 etc), to

describe their intramolecular, bonded interactions. These force fields also incorporate non-

bonded interactions, which are represented using Lennard-Jones (LJ) potentials. LJ pa-

rameters are obtained using the Lorenz-Berthelot13 mixing rules. Only minor adjustments

are necessary to reproduce experimentally observable properties (such as crystal structure,

density and viscosity).

Classical models are also available for a wide range of solid surfaces and are usually op-

timized to reproduce empirical data (lattice structure, compressibility, and/or vibrational

spectra). In most cases LJ potentials are not able to reproduce the strong short-range inter-

actions in solids, and more flexible functional forms are used. Unfortunately, these potentials

cannot simply be mixed with LJ models for organics to obtain molecule-surface interactions

and are unavailable in the literature for novel systems. They must be reparametrized for

every molecule-surface combination. This is a complicated task for several reasons.

In contrast to systems composed entirely of fluids or solids where experimentally measured

macroscopic properties can be used as fitting criteria, experimental data is rarely available

for systems composed of large organic molecules adsorbed on surfaces. In these situations,

atomistic models must be based on higher level quantum mechanical calculations instead.

However, quantum chemistry techniques have difficulties treating large organic molecules on

surfaces as such systems easily exceed the capabilities of present computers.

One solution that was employed in the past was to separate the molecule into smaller

fragments of reduced computational cost.14 A force field representing each fragment is then

separately parametrized using ab initio data and the resulting force fields are combined to

describe the full molecule. Unfortunately, this procedure is both time consuming to formulate

and to implement, requiring a significant amount of chemical intuition.

Furthermore, despite the fact that this approach has been shown to produce reasonable

force fields, inaccuracies often appear in the the properties of larger molecules represented in

such a way.15–17 The final force field parameters for the entire molecule should be adjusted to
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reproduce experimental measurements. However, such measurements are often unavailable.

Studying large molecules on surfaces further increases the complexity of the system and as a

result increases the error that may arise from an incomplete description of the full molecule.

These challenges highlight the need for an efficient systematic procedure for parametrizing

molecule-surface interactions in complex systems, which is currently lacking.

In this paper we present an efficient scheme for fitting classical force fields for entire

organic molecules on surfaces by matching classical molecule-surface interactions to ab-initio

data using genetic algorithm (GA) methods. We employ a periodic QM/MM embedding

scheme18,19 to treat large systems quantum mechanically and avoid the need for fragment

analysis. This method reduces the number of atoms within the system that must be treated

quantum mechanically, allowing us to calculate the full molecule-surface interaction and

produce training data sets. However, the number of interaction parameters that had to

be simultaneously optimized was too large for conventional least-square methods due to

complexity of the system.

In order to meet this challenge, we employed GA methods which have been shown to pro-

duce reasonably good solutions,20–24 for many small systems. We illustrate this approach on

a particular system: a large 1,4-bis(cyanophenyl)-2,5-bis(decyloxy)benzene (CDB) molecule

adsorbed onto KCl(100) in vacuum. Our results show how unlikely atomic configurations

should be included in the training set to avoid over-training the model. Since the CDB

molecule contains many organic building blocks, we tested the transferability of our pa-

rameters using a variation of the molecule on KCl(100). Our results show that while the

parameters produced are qualitatively transferable, they can not quantitatively predict val-

ues such as the adsorption energy of other molecules. Fortunately, the methods presented are

efficient enough that it is realistic to reparametrize the force field for each unique molecule.
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Density Functional Theory

Large flexible organic molecules on surfaces can be difficult to represent using classical force

fields. Such systems contain many degrees of freedom, resulting in complex molecule-surface

interactions. Critically, if there are large electronic relaxations present in the system, special

treatment such as charge variable potentials may be required. On wide band gap insulators

however, many molecules are primarily physisorbed and exhibit little or no charge transfer.

One previously studied example is the CDB molecule on KCl(100).25 This molecule pos-

sesses two interchangeable functional groups, two hydrocarbon chains, and a variable length

aromatic central body as shown in Figure 1.

Figure 1: The structure of a CDB molecule with N atoms shown in blue and O atoms
in red. The molecule consists of a central aromatic core with a CN or methyl functional
group on either end and two hydrocarbon arms joined to the main body by an O atom.
Experimentally, the length of the body and the functional groups was varied in order to
produce a variety of structures.25

These components all contribute to the various competing molecule-molecule (MM)

and molecule-surface (MS) interactions that dominate structure formation and growth pro-

cesses.25 We previously performed DFT simulations using the CP2K code and a mixed Gaus-

sian and plane waves (GPW) approach26,27 to study the properties of CDB on KCl(100).
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The PBE/GGA28,29 functional was used to represent the surface and the molecule and the

MOLOPT30 basis set was used to minimize basis set superposition error (BSSE). Finally,

we employed long range dispersion corrections31 in order to represent the vdW interactions

in the system. The values for surface K atoms were approximated using the parameters for

Ar while the rest of the atom types were assigned default values.

On the KCl(100) surface, the CDB molecule was found to adsorb with a total energy

of 3.1 eV with a 2.4 eV contribution from dispersion corrections.25 Since these dispersion

corrections account for such a significant percentage of the total adsorption energy, it would

be ideal to validate these results using experimental data or more accurate ab initio methods.

Unfortunately such results are not available for these types of systems at this time. The

molecule sits on the surface with CN groups positioned near cations, and shows negligible

charge transfer using Mulliken population analysis. Additionally, charge density difference

plots show that there is very little polarization or charge redistribution in the adsorbed

molecule, as shown in Figure 2.

Figure 2: The charge density difference plot of a CDB molecule adsorbed onto KCl(100). The
molecule sits with the two CN groups and one of the two O atoms interacting with cations on
the surface. The positive (0.001 electrons/Å3) isosurface is shown in silver while the negative
(-0.001 electrons/Å3) isosurface is shown in red. In this system, charge redistribution between
CDB and the surface is negligible.

The interaction between the molecule and the surface can be further characterized by

examining the electronic structure of the system. PBE/GGA is known to often underestimate
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the band gap and in this case produces a HOMO-LUMO gap of 5.6 eV compared to an

experimental value of 7.6 eV.32 Our calculations show that the HOMO and LUMO of the

CDB molecule sit in the gap of KCl, as shown in Figure 3. This provides further evidence

that charge transfer is unlikely in this system and indicates that it may be an excellent

candidate for representation using a classical force field.

Figure 3: Electronic density of states for a single CDB molecule on the KCl(100) surface.
The HOMO and LUMO of the molecule lie in the band gap of KCl, indicating a primarily
physisorbed system.

Since the CDB molecule is large, flexible, and has many degrees of freedom, generating

classical potentials directly from ab initio calculations of the entire molecule would be pro-

hibitively expensive; we employed an embedded slab or QM/MM method to greatly reduce

the computational cost of generating a fitting library.

Periodic QM/MM

One of the major limitations to performing ab initio calculations on this system is that the

surface requires several atomic layers of atoms in order to produce a proper band gap. A

calculation of bulk KCl in this case gives a band gap of 5.6 eV while a 4 layer slab represented

7



periodically in X and Y produces a band gap of 5.4 eV due to surface states. One strategy to

reduce the computational cost of such calculations is to simply reduce the number of atoms

in the simulation. However, it is critically important to ensure that the electronic structure

of the surface is preserved so that the molecule-surface interaction is accurately represented.

In order to accomplish this, many of the KCl atoms can be represented classically using

the 2-dimensional embedding scheme implemented by Laino et al,18,19 as shown in Figure 4.

Atoms within the CDB molecule and the first layer of surface atoms that they interact with

are treated quantum mechanically, while the remaining surface atoms are represented using

a set of classical potentials.

Figure 4: A schematic representation of the QM/MM model system. Quantum mechanically
represented atoms are highlighted in red and the boundaries of the QM and MM regions are
highlighted. MM atoms closer to the QM region have their charge density projected onto
finer grids than those at the edge of the simulation box.

We have chosen a set of classical potentials derived by Catlow et al.33 to represent the

MM region. Since the shell model is not currently implemented within the QM/MM scheme

in CP2K, we have fixed the positions of the shells to that of the cores in this model. The
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QM region was represented using the methods described in the previous section: the GPW

approach,26,27 PBE/GGA28,29 functional, MOLOPT30 basis sets, and long range dispersion

corrections.31

The first step in using such a representation is to verify that the properties of the surface

do not change significantly in comparison to a full DFT calculation. Examining the electronic

density of states of KCl represented using the QM/MM approach shows that the HOMO-

LUMO gap of the material is only slightly reduced when fewer atoms are treated quantum

mechanically, as shown in Figure 5. At the extreme limit, where there is only one QM layer

and three MM layers, the band gap of KCl(100) is calculated to be 4.4 eV. Since the HOMO

of the molecule lies nearly 2 eV above that of the surface, and the LUMO of the molecule

lies nearly 2 eV below that of the surface as shown in Figure 3, a 1 eV reduction in the

HOMO-LUMO gap of KCl(100) did not have any effect on the electronic structure of the

adsorbed system. Similarly, increasing the band gap by using a hybrid functional also did

not qualitatively change the interaction between CDB and KCl.

Figure 5: The electronic density of states for KCl(100) represented using QM/MM.

One common problem in previously employed embedded cluster methods is that elec-

tron density tends to redistribute from quantum mechanically treated atoms to the nearest
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classical atoms.34,35 In previous studies, pseudopotentials are often applied to the cations

nearest the QM region.36 However, in CP2K the classical atoms are not represented as point

charges, but are treated as a Gaussian charge distribution, greatly reducing this effect in our

system. The size of the function used was chosen based on the ionic radius of the atom in

question. In this work we used a value of 152 pm for K and 167 pm for Cl and charges of +1

and -1 respectively. An isosurface of the electron density of the system (0.001 electrons) is

shown in Figure 6, showing that there is effectively no charge density present on classically

treated atoms.

Figure 6: An isosurface (0.001 electrons) of the electron density of the QM/MM system.
One layer of atoms has been represented quantum mechanically while the rest are classically
treated. The system is periodic in 2 dimensions along X and Y. There is effectively no charge
density on any of the surface atoms beyond the first layer.

A summary of the properties of the KCl(001) surface obtained from experiment,32,37

standard DFT (GGA/PBE) methods, and QM/MM methods is shown in Table 1. These

results indicated that the QM/MM representation provides a reasonable approximation for

the insulating properties and accurately reproduces the structure of the KCl(100) surface.

This treatment greatly reduced the number of atoms treated quantum mechanically

within our system, allowing us to generate a large database of data aimed at describing

the full range of possible interactions between a CDB molecule and the KCl(100) surface.

This database was then used to parametrize classical potentials.
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Table 1: The properties of the KCl(001) surface from experimental data,32,37 a full DFT
(GGA/PBE) representation, and the QM/MM scheme using 1 QM layer and 3 MM atomic
layers.

Lattice Constant Surface Rumpling Band Gap

Experiment 6.3 Å 0.03 Å 7.6 eV
DFT (PBE-D2) 6.3 Å 0.03 Å 5.4 eV

1QM/3MM Layers 6.3 Å 0.04 Å 4.4 eV

Classical Force Fields

While complete force fields representing CDB molecules on KCl(100) are not readily avail-

able, many of the components we need have been previously derived. We can separate

the interactions into various categories, as shown in Figure 7, and use previously derived

potentials when possible.

Figure 7: A schematic illustration of the interactions in our system. The area within the
dashed line (highlighted in red and orange) represents intramolecular and intermolecular in-
teractions. These contributions were obtained from CHARMM. The area within the dotted
line (highlighted in green) represents interactions within the KCl surface. These contribu-
tions were obtained from a classical model derived by Catlow et al.33 Interactions between
the CDB molecule and the KCl(100) surface are not available in the literature.
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Organic molecules are well studied and a number of popular forcefields are available

(CHARMM,8–10 AMBER,11 UFF,12 etc). We have selected the CHARMM force field8–10 to

describe the intramolecular interactions within CDB molecules, due to availability in most

MD codes. This provides all of the bonded interactions within CDB, and a set of Lennard-

Jones atomic parameters for non-bonded short-range interactions. Since CHARMM does

not provide partial charges for the functional groups contained in the CDB molecule, we

obtained them using Mulliken population analysis on DFT calculations of an isolated CDB

molecule. The KCl surface has also been studied extensively in the past. For the sake of

continuity we used the same classical potentials Catlow et al.33 as in the previously described

QM/MM scheme.

Interactions between the molecule and the surface, however, are not available in the

literature. Furthermore, experimental fitting data is not available and the analytical forms

of the two models selected are incompatible, making it impossible to apply any mixing rules.

Therefore all mixed interactions must be parametrized using ab-initio data. It is important

to note that all of the molecule-surface interactions within the system are defined explicitly

and modelled with new parameters. The interactions included between the molecule and the

surface do not change the original force fields chosen to represent interactions within CDB

molecule or the KCl surface.

Since the functional forms we chose to represent our organic molecules and surfaces are

not the same, it is unclear which analytical expression would best reproduce the molecule-

surface interactions in the system. We considered several different analytical forms for fitting

the short-range potentials between CDB and KCl atoms. The first two fitting models were

of the Lennard-Jones type:

Vij(r; p) = 4εij

[(σij
r

)12
−
(σij
r

)6]
p = {εij, σij} ,
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where p is the parameter vector, i is an atom type within the CDB molecule and j

represents an atom type within the KCl surface. In the first model, the atomic parameters

{εK , σK} and {εCl, σCl} for K and Cl were parametrized; all mixed interactions were then

obtained by mixing these parameters with the ones for CDB atomic types, using Lorenz-

Berthelot mixin rules. This Lennard-Jones-Mixing (LJM) model has a total of four fitting

parameters. All mixed interactions in the second model were optimized independently. Since

the CDB molecule is composed of 13 different atomic types and the surface contains 2 atomic

types, this model has a total of 52 fitting parameters. This model is labelled Lennard-Jones-

All (LJA).

We then considered the Morse potential form38 (MRS):

Vij(r; p) = Dij

[
e−2αij(r−ρij) − 2e−αij(r−ρij)

]
,

p = {Dij, αij, ρij} ,

with a total of 78 parameters, and the Fumi-Tosi potential39 (FT) with a total of 130

parameters:

Vij(r; p) = Aij exp

(
σij − r
ρij

)
− Cij

r6
+
Dij

r8
,

p = {Aij, σij, ρij, Cij, Dij} .

We then evaluated each of these potential forms to determine which one was best for

describing the interactions between CDB molecules and the KCl(001) surface. Since these

forms were originally designed to represent a variety of materials, they will not all be able

to accurately represent the surface.
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Genetic Algorithm

Since each of the classical models described so far contains a large number of interdependent

force field parameters, we could not use simple systematic optimization algorithms. In

order to address this challenge, we used a home-built GA code with the algorithm shown in

Figure 8a.

Figure 8: (a) Schematic description of the GA algorithm and (b) the mixing procedure with
cross-over and mutation operations.

The main idea of the algorithm is to create a population of N elements e0, e1, ..., eN−1

with random genomes, evaluate their fitness, and intermix the best ones to generate an

offspring population. In this study, we defined fitness as a measure of how well the classical

force field reproduces ab initio data. Elements with higher fitness are more likely to be

selected for mixing; their characteristics will be passed on to the next generation. After

many generations, the genome eventually adapts to produce an accurate classical force field.

In our implementation, the genome of ek is the parameter vector p(k) associated with the

chosen analytical model.

p(k) =
{
p
(k)
0 , p

(k)
1 , ...

}
. (1)
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Each parameter p
(k)
i is constrained within the interval [pmin, pmax], which prevents the algo-

rithm from finding unphysical solutions, such as negative values for lengths. Furthermore,

we rounded all parameter values to the second decimal place in order to facilitate identifying

similar elements. When duplicate elements appear in the population, only one of them is

preserved while the remainder are randomized. Finally, 5% of the total population is ran-

domized every generation, introducing new genes into the system and reducing the rate of

stagnation.

Defining Fitness

Experimental values for the physical properties of CDB molecules adsorbed onto KCl(001)

were not available, so our aim with this example was to show that the method can rapidly

generate fitting data and parametrize a force field to represent the potential energy surface

of the system obtained from DFT. The data available included atomic forces and energies

at various adsorption geometries on the surface. We chose to parametrize our force field

using forces and to evaluate them using previously published values for adsorption energy

and geometry.

In order to select the best members of each population, we have defined the fitness of

an element, f
(
p(k)

)
, as the difference between the forces on the molecular atoms calculated

using DFT methods and the forces on the same atoms produced using the classical model

defined by the parameters of that element:

f
(
p(k)

)
= −

〈∣∣∣~FMD − ~FDFT
∣∣∣2〉

frames

, (2)

which is the squared mismatch between forces from DFT and the classical model, averaged

over the configurations (or frames) in the training set. As the classical potential is trained to

fit the DFT data, this discrepancy f (p) ≤ 0 approaches zero. The mismatch is calculated
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between the total force acting on the CDB molecule:

~FMD =
CDB∑
i

~FMD
i (3)

~FDFT =
CDB∑
i

~FDFT
i (4)

Atomic forces should not be used as fitness criterion as they cannot be partitioned into sur-

face and intra-molecular components in the DFT data. Moreover, CHARMM intra-molecular

interactions are different from DFT intra-molecular interactions, leading to an intrinsic mis-

match between atomic forces that the GA will attempt to minimize in any way possible.

The resulting molecule-surface interactions will then be unphysically optimized. We chose

to consider the total force on CDB, since Newton’s third law ensures that the contributions

from intra-molecular forces cancel out numerically. This way we avoided incorrectly compen-

sating for the mismatch between CHARMM and DFT interactions within the CDB molecule.

Similarly, the forces on the surface that can be attributed to molecule-surface interactions

are equal and opposite of those on the molecule, and were ignored in our analysis.

Each element in the population is then ranked according to their fitness and N pairs

were selected at random for mixing. The probability of choosing a particular ek is exp (k/λ)

with:

λ =
log (N)

N − 1
. (5)

This way, the probability P (eN−1) of choosing the worst element is low:P (e0)/N . The selec-

tion operation is then performed made based on the position of ek in the sorted population,

rather than the fitness value; this ensures that bad elements are occasionally selected to

enhance diversity.

The mixed genome p(new) of ei, ej is generated using a standard cross-over operation,

where a random portion of the genome p(i) is complemented by a portion from the other
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member p(j), as shown in Figure 8b. The offspring genome can then be expressed as:

p(new) =
{
p
(i)
0 , ..., p

(i)
m , p

(j)
m+1, ..., p

(j)
n

}
, (6)

where m is an index chosen at random. Furthermore, there is a 0.2% chance of randomly

mutating one of the values pnew
k during each operation.

Acceptance Criteria

When using GA optimization algorithms, it is important to remember that any perceived

convergence can be misleading. The technique has not been mathematically proven to even-

tually find the best solution to the problem, and indeed it is possible that a sudden random

mutation can greatly improve the fitness of an element within the population. This results

in great difficulties when determining how many generations are needed before an acceptable

set of results has been produced.

In the context of the methods discussed here, however, we were able to define an accep-

tance criterion as a replacement for the more commonly used convergence criteria. Since the

model uses the CHARMM force field to represent interactions within the CDB molecules, a

certain amount of error between DFT and classical forces already exists within the system.

For the isolated CDB molecule in the minimized lowest energy configuration, we calculated

the difference in forces produced by DFT and CHARMM, to be on the order of 5%. Since

this comparison was made at the lowest energy configuration of the molecule, these forces

are very close to zero already.

If the average difference in the force on the CDB molecule when it is adsorbed onto

KCl(001) between our QM/MM simulations and the optimized force field is comparable,

then it is reasonable to consider it to be fairly high quality. Since this average value would

include comparisons performed at geometries other than the minimum energy configuration,

it would indicate that the force field is able to provide a good description of the molecule-
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surface interactions between CDB and KCl for a broad range of geometries and positions of

the molecule. For this study, we then set an acceptance criterion of 5% average error in forces

when compared to QM/MM data. It is important to note that the acceptance criteria simply

represents a numerical comparison between the mismatch between the optimized interactions

and the original CHARMM force field and cannot be used as a physical evaluation of the

force field alone.

Results

Since experimental data describing the properties of CDB molecules on KCl(100) were not

available, we used the previously described method to generate classical force fields for CDB

on the KCl(100) surface.

The training set created for CDB on KCl(100) consisted of 210 atomic configurations

for the system. The first 80 frames (or configurations) were obtained from QM/MM MD

calculations starting from the ground state of the adsorbed molecule. The starting position

of the molecule was then rotated in 15◦ increments and a new trajectory was calculated at

each starting position, resulting in 90 additional frames. The final 40 frames were created

by artificially positioning the molecule at varying heights above the surface. These frames

represent situations that would not normally be probed via room temperature MD and

provide information about the system when the molecule is farther or closer to the surface

plane.

For each previously described functional form, a population of N = 1024 elements was

evolved over 1000 generations. Since GA relies heavily on randomness, the calculation was

repeated 5 times for each model. In our preliminary tests, we found that populations as

small as N = 256 and N = 512 could not generate reproducible results, due to a rapid

convergence of the genes. Large populations of N = 1024 or more members tend to remain

diverse for enough generations to produce similar results.
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Figure 9: Fitness of the best element for LJM (dashed, orange), LJA (dotted, red), and MRS
(solid black) models over 1000 GA generations. Solid and dashed lines represent different
runs with random initial conditions.

Figure 9 shows the fitness (square root of f(p)) of the best element over 1000 generations

for the LJM, LJA and MRS models. The absolute best fit was achieved by the MRS analytical

form, with a mean discrepancy of 1.40 nN. LJA and LJM also produced reasonably low mean

discrepancies of 1.78 nN and 1.86 nN, respectively. The LJM model converges rapidly since

it contains fewer parameters than the others, but results in the worst fitness out of these

functional forms. Finally, the FT produced a fitness value three orders of magnitude worse

than these models and will not be discussed further.

When the fitness of LJ and MRS models is translated into forces, the average error on

the total CDB force is always within 5% of the DFT reference values; all of these models

satisfy the acceptance criteria. However, there are important differences between the LJ and

MRS models that are not immediately apparent.

Figure 10 shows a comparison between DFT reference forces and classical forces ob-

tained using the LJA model over the entire fitting data set. Large differences were observed

throughout the entire set. It is quite evident from the last 40 frames, where the molecule

is lifted above the equilibrium adsorption height, that the LJ model underestimates the the

attractive interactions between the molecule and the surface. These results can be compared
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Figure 10: Comparison between DFT reference forces (black dashed) and ones obtained from
the best fitted LJA model (solid red). Only the component normal to the surface plane is
shown.

to the MRS model, which is shown in Figure 11.

Figure 11: Comparison between DFT reference forces (black dashed) and ones obtained from
the best fitted Morse model (solid red). Only the component normal to the surface plane is
shown.

This improved model is able to reproduce the first 80 training frames, from near-ground

state DFT-MD, as well as the last 40, indicating a better representation of the distance

dependence of the molecule-surface interaction.

Finally, we evaluated these force fields by examining physical properties of the system

that were not directly used as fitting criteria. The LJ and MRS models both predict that
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the lowest energy configuration of an isolated CDB molecule on KCl(100) is where the cyano

groups are anchored to surface cation sites and the body of the molecule is aligned in the

[110] direction. This is consistent with previously published DFT results.25 These models

can also be evaluated by comparing the adsorption energies they produce to DFT data.

While the exact value of this adsorption energy depends greatly on the dispersion correction

used in the training set, the goal of our GA scheme was simply to reproduce DFT results.

The adsorption energy of CDB was estimated using DFT to be 3.1 eV25 while LJA gives an

adsorption energy of 2.6 eV and MRS gives better agreement with an adsorption energy of

2.8 eV.

It is clear that the final force fields must be evaluated using properties that were not

explicitly incorporated into the fitting data. Furthermore, it is important to remember that

it is difficult for a single classical force field to reproduce all of the physical properties of a

material. If a particular property of a system is critical, then it should be directly included

in the fitting data.

Discussion and Conclusions

One of the main challenges with GA based optimization schemes is that convergence is

not guaranteed, even to a local minimum. A convergence criteria, i.e. RMS deviation

between successive generations, can not be defined since the step size between generations

can not be defined. Furthermore, the variational principle is not applicable in these systems.

The fitness of the best element can remain constant for 100 generations before a random

mutation appears to improve the population, as shown in Figure 9. However, within the

framework of this scheme, an acceptance criterion was defined based on the average error

between reference forces from DFT and the CHARMM force field. For the isolated CDB

molecule, CHARMM interactions already result in a 5% error in forces when compared to

DFT. Each parametrized model that then gives a comparable error is of acceptable quality.
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When reasonable interaction models are considered, the algorithm was able to find a solution

giving less than 5% error within 1000 generations.

Another important challenge that we encountered was ensuring the completeness of the

training set. Simply taking atomic configurations from MD trajectories was not sufficient to

represent the full range of interatomic interactions, since the CDB molecule is always found

near its equilibrium position,. The model was overtrained to reproduce that one particular

state. In our initial attempts, LJ models were driven towards unphysically strong interactions

between certain atom types in order to reproduce the DFT-MD training set. The algorithm

did not know that such strong interactions produced catastrophic instabilities when CDB

atoms came as little as 0.1 nm closer to KCl. The inclusion of additional configurations in

the repulsive regime balanced the fitness criteria, and the models produced were found to be

stable throughout up to 10 ns of MD.

It is important to note that not all functional forms are appropriate for all systems.

CDB-KCl interactions are strong, as indicated by the large adsorption energy calculated

using DFT. Our fit shows that LJ models fail to reproduce such interactions because they

are too soft. Therefore, Morse potentials were better suited for the task.

Moreover, the LJ parameter σ controls the width (and slope) and position of the energy

well simultaneously, while these are independently tuned by α and r0 in the Morse model.

This increased freedom in shaping the energy profiles mathematically guarantees a better

fit. On the other hand, the Fumi-Tosi potential relies on a delicate balance between the

exponential and the 1/rn terms. Minor changes in one parameter may cause the shape of

the energy profile to change dramatically, so that the minimum disappears. Since we were

not able to restrict the parameter search space to a sensible, narrow range beforehand, it

would take several more GA iterations to find appropriate values, and this method becomes

inefficient.

Finally, we examined the transferability of this particular force field by considering a vari-

ation of the CDB molecule. This variant is called 1,3,5-tri(4”-cyano-4,4’-biphenyl) benzene
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(TCB) and is composed of three cyano-benzene functional groups attached to a central ring.

A direct mapping of the atom types within the CDB molecule resulted in a charged TCB

molecule, which is unphysical. In order to solve this problem, we reassigned the charges on

TCB atoms from Mulliken population analysis using DFT results. However, the MRS poten-

tials were parametrized to compliment existing Coulomb interactions within the system; the

charges within the molecule should not be adjusted without simultaneously reparametriz-

ing all the components. Such a treatment resulted in a force field that could qualitatively

predict the lowest energy adsorption geometry of the molecule, but severely underestimated

the value of the total adsorption energy by 50%. It is clear that while it may be possible to

manually adjust the charges within the molecule in order to produce a higher quality force

field using the same MRS components, this would require significant chemical intuition and

can not be done systematically. Fortunately, the scheme presented here is efficient enough

that it is possible to reparametrize the force field for each molecular variant directly from ab

initio data.

To summarize, in this study we have developed an efficient scheme for fitting molecule-

surface force fields by combining QM/MM embedding techniques with GA. This scheme

avoids the need to evaluate large molecules as a combination of smaller fragments and allows

us to optimize all the parameters within our system simultaneously. We showed how GA

methods can produce a reasonably good fit at a moderate computational cost, suggesting

that it can be employed as a routine method.
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