72 research outputs found

    The Correlation Between SPP1 and Immune Escape of EGFR Mutant Lung Adenocarcinoma Was Explored by Bioinformatics Analysis

    Get PDF
    BackgroundImmune checkpoint inhibitors have achieved breakthrough efficacy in treating lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFR), leading to the revision of the treatment guidelines. However, most patients with EGFR mutation are resistant to immunotherapy. It is particularly important to study the differences in tumor microenvironment (TME) between patients with and without EGFR mutation. However, relevant research has not been reported. Our previous study showed that secreted phosphoprotein 1 (SPP1) promotes macrophage M2 polarization and PD-L1 expression in LUAD, which may influence response to immunotherapy. Here, we assessed the role of SPP1 in different populations and its effects on the TME.MethodsWe compared the expression of SPP1 in LUAD tumor and normal tissues, and in samples with wild-type and mutant EGFR. We also evaluated the influence of SPP1 on survival. The LUAD data sets were downloaded from TCGA and CPTAC databases. Clinicopathologic characteristics associated with overall survival in TCGA were assessed using Cox regression analysis. GSEA revealed that several fundamental signaling pathways were enriched in the high SPP1 expression group. We applied CIBERSORT and xCell to calculate the proportion and abundance of tumor-infiltrating immune cells (TICs) in LUAD, and compared the differences in patients with high or low SPP1 expression and wild-type or mutant EGFR. In addition, we explored the correlation between SPP1 and CD276 for different groups.ResultsSPP1 expression was higher in LUAD tumor tissues and in people with EGFR mutation. High SPP1 expression was associated with poor prognosis. Univariate and multivariate cox analysis revealed that up-regulated SPP1 expression was independent indicator of poor prognosis. GSEA showed that the SPP1 high expression group was mainly enriched in immunosuppressed pathways. In the SPP1 high expression group, the infiltration of CD8+ T cells was lower and M2-type macrophages was higher. These results were also observed in patients with EGFR mutation. Furthermore, we found that the SPP1 expression was positively correlated with CD276, especially in patients with EGFR mutation.ConclusionSPP1 levels might be a useful marker of immunosuppression in patients with EGFR mutation, and could offer insight for therapeutics

    Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans

    Get PDF
    The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.</p

    GC-1 mRHBDD1 knockdown spermatogonia cells lose their spermatogenic capacity in mouse seminiferous tubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is important for regulating spermatogenesis. The protein mRHBDD1 (mouse homolog of human RHBDD1)/rRHBDD1 (rat homolog of human RHBDD1) is highly expressed in the testis and is involved in apoptosis of spermatogonia. GC-1, a spermatogonia cell line, has the capacity to differentiate into spermatids within the seminiferous tubules. We constructed mRHBDD1 knockdown GC-1 cells and evaluated their capacity to differentiate into spermatids in mouse seminiferous tubules.</p> <p>Results</p> <p>Stable mRHBDD1 knockdown GC-1 cells were sensitive to apoptotic stimuli, PS341 and UV irradiation. <it>In vitro</it>, they survived and proliferated normally. However, they lost the ability to survive and differentiate in mouse seminiferous tubules.</p> <p>Conclusion</p> <p>Our findings suggest that mRHBDD1 may be associated with mammalian spermatogenesis.</p

    RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy

    Get PDF
    Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138(−/−) mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation

    Exosome-Related Multi-Pass Transmembrane Protein TSAP6 Is a Target of Rhomboid Protease RHBDD1-Induced Proteolysis

    Get PDF
    We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6

    Gene Cdca2 knockout has no significant effect on spermatogenesis and fertility in mice

    No full text
    Objective To explore the physiological function of gene for cell devision cycle associated 2 (Cdca2), a highly expressed testis gene, in spermatogenesis and fertility in mice. Methods The expression of Cdca2 in different tissues of mice was detected by Q-PCR and Western blot; Using CRISPR/Cas9 gene editing technology and Cre-loxP mediated recombination system, a mouse strain with Cdca2 tissue specific knockout was constructed; By hematoxylin-eosin(HE) staining and morphological analysis, the effect of CDCA2 deletion on spermatogenic cell morphology at different stages of spermatogenesis was studied; The effects of CDCA2 deletion on sperm motility and motility parameters were detected by an automatic sperm detection and analysis system; The effect of CDCA2 deletion on the fertility of male mice was examined by fertility test. Results Cdca2 was a highly expressed gene in testis; Cdca2 germ cell specific knockout mice were successfully obtained by CRISPR/Cas9 technology and reproductive system; CDCA2 deletion in mice had no statistically significant effect on spermatogenic cells, sperm motility parameters and male fertility at all stages of spermatogenesis. Conclusions Cdca2 is probably not necessary for spermatogenesis and male fertility maintenance in mice

    Antecedents and consequences of child emotional abuse : a retrospective study among undergraduates in Singapore

    No full text
    Child Emotional Abuse (CEA) refers to the significant impairment of a child’s social, emotional and intellectual development resulting from the adult’s persistent hostility, ignoring, blaming and discrimination of the child. Hostile rejection, terrorization, and denial of emotional responsiveness are key dimensions of CEA, suggesting that inappropriate interpersonal communication is a major contributing factor. Despite the serious repercussions and high incidence of CEA, it remains understudied and neglected by the public at large. Although risk factors and consequences of CEA have been investigated separately, limited literature has examined the antecedents and long-term consequences of CEA in one study. Taking into account that family members can affect the functioning and emotional stability of other members, Bowen Family Systems Theory is used as a theoretical framework for the current study to discuss how poor interpersonal communication can arise from antecedents such as parenting styles, family communication patterns and socio-economic statuses. Consequences such as self-esteem and attitudes towards parents in adulthood were also studied. An online survey was administered to 615 undergraduates in Singapore and they were asked to recall their childhood experiences of emotional abuse. Significant relationships were identified with all antecedents and consequences of CEA. Our key findings revealed that responsive parenting style and attitudes towards parents in adulthood were strongly and negatively correlated to CEA. Based on the results, the authors will discuss theoretical implications and practical contributions to policy makers, campaign organisers and parents to address the problem of CEA in Singapore.Bachelor of Communication Studie

    Effect of Pabpc6 knockout on spermatogenesis of male mice

    No full text
    Objective To investigate the role of cytoplasmic poly (A) binding protein-6 (PABPC6) in spermatogenesis of male mice. Methods The Pabpc6 in C57BL/6J mice was knocked out by CRISPR/Cas9 targeting, and the Pabpc6 was identified by PCR. Three types of mice with different genotypes of Pabpc6+/+, Pabpc6+/- and Pabpc6-/- were obtained by mating and breeding. Testis was weighed;Morphological observation and sperm counting were carried out. The mRNA and protein expression levels of Pabpc6 in different tissues were detected by real-time quantitative PCR and Western blot. Immunofluorescence and hematoxylin-eosin staining were used to observe the location of the gene and the morphological changes in the convoluted spermatic tubule of testis. Results The Pabpc6 knockout mice were successfully identified. Pabpc6 was highly expressed in testicular tissue(P<0.001). Immunofluorescence showed that Pabpc6 was mainly expressed in spermatocyte at early sperm stage. Compared with wild-type mice, knockout mice showed no significant differences in testicular shape, sperm morphology, sperm count and the morphology of convoluted spermatic ducts. Conclusions Pabpc6 is found to be highly expressed in the testis tissue of mice. Pabpc6 has no obvious effect on spermatogenesis of male mice after knockout of Pabpc6. The results indicate that the protein encoded by Pabpc6 is not necessary for spermatogenesis of mice
    corecore