106 research outputs found

    Comparison of CuBr-laser frequency operation modes

    Get PDF
    The results of a comparative study of CuBr-laser energy characteristics with a small active volume operating in pulse-periodic mode and dual pump pulses are presented. The advantages of these regimes in the range 5-100 Hz and 5-100 kHz for output power, the energy generation and efficiency of the laser are shown

    Enhanced detection method for corneal protein identification using shotgun proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea.</p> <p>Results</p> <p>Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10<sup>-3 </sup>and peptides with a probability of 10<sup>-2 </sup>or less with at least two unique peptides isolated within the run along with default Xcorr values. These parameters resulted in the identification of over 350 proteins, including over 225 new proteins not previously detected in the cornea by mass spectrometry. In addition, corneal layer separation resulted in identification of nearly every protein that was identified in the complete cornea assay. The epithelium and endothelium each revealed many unique proteomes specific to each layer. In the endothelium, the protein olfactomedin-like 3 was identified for the first time in the cornea by this analysis. Olfactomedin-3 is a neuronal expressed protein also known as optimedin that stimulates formation of cell adherent and cell-cell tight junctions and its expression modulates cytoskeleton organization and cell migration. However, the function of this protein in rabbit corneal endothelium is currently unknown.</p> <p>Conclusion</p> <p>This manuscript presents a description of a more comprehensive proteomic profile for mammalian cornea compared to past methods. The use of simple dissection procedures of the tissue and the application of long chromatographic gradients, many more proteins can be identified.</p

    Temperature operating mode of the CuBr+Ne+H2(HBr)-laser at change of pumping

    Get PDF
    The analysis of a temperature mode of the laser on copper bromide vapour using active additives of hydrogen (bromhydrogen) at change of pumping parameters has been carried out. It is shown that introduction of the optimal additive increases the discharge tube wall temperature from 620 up to 720 °С. The increase of wall temperature 50...60 °С more can occur at change of buffer gas pressure from 3,3 to 13,3 kPa, as well as at increase working capacity twice. It is stated that introduction of the additive raises pressure of working substance vapours in the active media of the laser of average diameter 6,7 Pa more due to interaction of bromine, bromhydrogen with copper atoms settled on the tube wall. The peculiarities of laser thermal mode at high frequencies of pulse sequences (up to 100 kHz) have been considered

    Frequency energy characteristics of a CuBr laser under breakdown conditions

    Get PDF
    The active medium of pulsed periodic copper vapor lasers (CVL) is characterized by a high pre pulse electron concentration ne0 1013 cm–3. Therefore, it was assumed that the development of the discharge under these conditions occurs without a breakdown stage, and a simple oscillatory circuit is used as the equivalent circuit of the laser discharge circuit, which determined the approach to choosing the optimal pumping conditions. However, as studies have shown, the development of a discharge in gas discharge tubes (GDT) with electrodes located in cold buffer zones (CBZ) is carried out with a breakdown stage

    Metastable states relaxation in the active medium of metal vapor lasers

    Get PDF
    One of the main reasons for limiting the frequency-energy characteristics (FEC) of radiation from lasers based on self limited transitions of metal atoms (LSTM) is the high values of the prepulse electron concentration and metastable states population of metal atoms in the active medium. Which of these parameters determines the limitation of the frequency energy characteristics of laser radiation has been the subject of a long discussion, although it is well known that metastable states are very effectively quenched in collisions with electrons

    Operation of a capacitive pumped cubr laser in a reduced energy deposition mode

    Get PDF
    The results of the operation of a capacitive pumped CuBr laser in a reduced energy deposition mode are presented. A high radiation-pulse repetition rate of 100 kHz in the active medium of copper bromide vapors was obtained. The results of OrCAD simulation of the high-frequency metal vapor active media pumping source with capacitive pumping are presented

    Characterization of the mammalian family of DCN-type NEDD8 E3 ligases

    Get PDF
    Cullin-RING ligases (CRL) are ubiquitin E3s that bind substrates through variable substrate-receptor proteins. CRLs are activated by attachment of the ubiquitin-like protein NEDD8 to the Cullin subunit and DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like proteins and little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and Cullins that can only be neddylated in the presence of substrate adaptor. These DCNL-CUL-CAND1 complexes may represent “reserve” CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most Cullin subtypes, but that they are likely responsible for the neddylation of different subpopulations of any given Cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their Cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression

    Damaged DNA Binding Protein 2 Plays a Role in Breast Cancer Cell Growth

    Get PDF
    The Damaged DNA binding protein 2 (DDB2), is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER)-positive (MCF-7 and T47D), but not in ER-negative breast cancer (MDA-MB231 and SKBR3) or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold) higher in ER-positive than in ER-negative tumor samples (P = 0.0208) from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase). These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer

    Regulation and Role of Arabidopsis CUL4-DDB1A-DDB2 in Maintaining Genome Integrity upon UV Stress

    Get PDF
    Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase
    corecore