13 research outputs found

    Experimental and Numerical Study on Vibration-Based Damage Detection and Localization in Laminated Composite Plates

    Get PDF
    Damage detection in composite materials is crucial for ensuring the safety and reliability of engineering structures. Conventional methods often face challenges in accurately identifying damage in plate-like structures, particularly in scenarios involving multiple damages or small-scale delamination. This study focuses on investigating the detection and localization of delamination in composite plates by employing both experimental and numerical modal analysis. An eight-ply woven Glass-Epoxy composite laminate with and without damage was prepared with the aid of hand lamination technique. Laminate was fixed to a Clamped-Free-Free-Free (CFFF) boundary condition for experimental modal analysis by introducing controlled damage to examine its impact on modal properties. To validate the natural frequencies (NFs) of damaged and undamaged composite laminates, a numerical analysis was conducted using ANSYS Parametric Design Language (APDL). Further, to advance the understanding of using modal shapes and their spatial derivatives for damage localization in composite plates under various damage situations, post-processing of simulation results was conducted using MATLAB. Finite Difference Method has been employed to calculate the derivatives, and a novel damage index (DI) is proposed to enhance damage localization capabilities. The results affirm that the proposed DI is effective and precise in identifying damage in plate-like structures, both for individual and multiple damage scenarios. This research study presents a novel approach for identifying and pinpointing damage in composite plates, thereby making a valuable contribution to the field of structural health monitoring (SHM) application

    An assessment of HDPE fillers and fiber wrapping on the strength of reinforced concrete

    Get PDF
    Fiber-reinforced polymer (FRP) is the most promising technique in the present era to bring sustainability, reliability, and pseudo ductility to concrete structures due to its superior properties. Thermoplastic and thermoset polymers are the most thrown-out synthetic waste that contributes to environmental pollution for a long time. To address this issue an attempt was made to utilize High-Density Polyethylene Fiber (HDPE) fillers of size 40x2 mm has been incorporated in concrete. This investigation aims to estimate the integrity effect of HDPE fillers incorporation and wrapping of concrete with Basalt fiber mats (BFM) and Geo-textile fiber mats (GFM) on split tensile strength, shear strength, and impact resistance as per standards. Results indicate that the addition of an optimum quantity of HDPE has a significant effect on improving the tensile, shear, and impact strengths. Adding HDPE fillers in the range of 0.5 - 1.5% in concrete samples wrapped with Basalt and Geo-textile fiber mats showed an increased tensile strength of up to 14.06% and 7.40% respectively with that conventional concrete. Further, wrapping of concrete using Basalt fiber and geotextile fiber mats showed a 4.16% and 20% increase in shear strength for 0.5% HDPE-incorporated concrete samples. Higher impact resistance was also observed for HDPE-added and fiber-wrapped concrete sample

    Effects of residual stresses on interlaminar radial strength of Glass-Epoxy L-bend composite laminates

    Get PDF
    The built-in heterogeneity of the composite laminates has been exploited to tailor the stiffness and strength requirements of modern structures to meet the specific functional demands. However, the non-homogeneity in these composites is the root cause for most of their failures. One of the undesirable consequences of the inherited heterogeneity is the development of cure-induced stresses during composite manufacturing. This work aims to investigate the influence of process-induced stresses on interlaminar radial strength in curved composite laminates. Glass-Epoxy (GE) laminates of two different thicknesses were prepared by hand lamination technique using V-shaped tooling and cured under room temperature. The state of residual stresses in GE laminates is varied by post-curing these laminates at different temperatures. Curved bending strength (CBS) and corresponding interlaminar radial stress for delamination of L-bend laminates were evaluated experimentally using four points bending test. The residual stress profile in each GE laminate is experimentally characterized by employing the Slitting method. The results indicate that the residual stresses have a negligible effect on the critical stress for initial delamination in GE laminates. But, the critical stress for delamination was found to be independent of the laminate thickness and increased with higher curing temperatures. The delaminated surfaces of L-bend laminates were studied using a scanning electronic microscope (SEM). The enhancement in the critical stress due to post-curing can be attributed to the improved fiber-matrix interfacial bonding with higher curing temperature

    Drawdown prepreg coating method using epoxy terminated butadiene nitrile rubber to improve fracture toughness of glass epoxy composites

    Get PDF
    Laminates of fibre-reinforced prepreg have excellent in-plane mechanical properties, but have inadequate performance in the through thickness direction. Here, we address this issue by application of epoxy-terminated butadiene nitrile (ETBN) liquid rubber between the prepreg laminae using an automatic draw bar coating technique. Test results reveal that by adding ETBN in small quantities in the range of 9.33–61.33 g/m2, the interlaminar critical energy release rates (GIc and GIIc) are improved by up to 122% in mode-I and 49% in mode-II. Moreover, this finding is further supported by the dynamic mechanical analysis thermograms that clearly indicate that coating has not altered the Tg of ETBN-coated samples. Scanning electron microscopic analysis of fracture surfaces showed that rubber particles formed micro cavitations in the epoxy, causing localised rubber rich regions. These resin-rich regions require more energy to fracture, resulting in increased toughness of the glass epoxy prepreg systems. </jats:p

    Mechanical Response of Glass–Epoxy Composites with Graphene Oxide Nanoparticles

    No full text
    Graphene-based fillers possess exceptional properties that encourage researchers toward their incorporation in glass–epoxy (GE) polymer composites. Regarding the mechanical and wear properties of glass–epoxy composites, the effect of graphene oxide (GO) reinforced in glass–epoxy was examined. A decrease in tensile modulus and increase in tensile strength was reported for 1 wt. % of GO. A shift in glass transition temperature Tg was observed with the addition of GO. The cross-link density and storage modulus of the composite decreased with the addition of GO. The decrease in dissipation energy and wear rate was reported with the increase in GO concentration. A simple one-dimensional damage model of nonlinear nature was developed to capture the stress–strain behavior of the unfilled and filled glass–epoxy composite. Tensile modulus E, Weibull scale parameter σo, and Weibull shape parameter β were considered to develop the model. Finally, to understand the failure mechanisms in GO-filled composites, a scanning electron microscopic (SEM) examination was carried out for tensile fractured composites

    On the Residual Stresses and Fracture Toughness of Glass/Carbon Epoxy Composites

    No full text
    The resistance to delamination in polymer composite depends on their constituents, manufacturing process, environmental factors, specimen geometry, and loading conditions. The manufacturing of laminated composites is usually carried out at an elevated temperature, which induces thermal stresses in composites mainly due to a mismatch in the coefficient of thermal expansion (CTE) of fiber and matrix. This work aims to investigate the effect of these process-induced stresses on mode-I interlaminar fracture toughness (GI) of Glass-Carbon-Epoxy (GCE) and Glass-Epoxy (GE) composites. These composites are prepared using a manual layup technique and cured under room temperature, followed by post-curing using different curing conditions. Double cantilever beam (DCB) specimens were used to determine GI experimentally. The slitting technique was used to estimate residual stresses (longitudinal and transverse direction of crack growth) inherited in cured composites and the impact of these stresses on GI was investigated. Delaminated surfaces of composites were examined using a scanning electron microscopy (SEM) to investigate the effect of post-curing on the mode-I failure mechanism. It was found that GI of both GE and GEC composites are sensitive to the state of residual stress in the laminas. The increase in the GI of laminates can also be attributed to an increase in matrix deformation and fiber&ndash;matrix interfacial bond with the increase in post-curing temperature
    corecore