4,401 research outputs found

    Dynamical Topology Change in M Theory

    Get PDF
    We study topology change in M theory compactifications on Calabi-Yau three-folds in the presence of G flux (the four form field strength). In particular, we discuss vacuum solutions in strongly coupled heterotic string theory in which the topology change is inevitable within a single spacetime background. For rather generic choices of initial conditions, the field equations drive the Kahler moduli outside the classical moduli space of a Calabi-Yau manifold. Consistency of the solution suggests that degenerate flop curves - just as wrapped M theory fivebranes - carry magnetic charges under the four form field strength.Comment: 21 pages, LaTeX, 2 figures (eps

    Inflation as a Probe of Short Distance Physics

    Get PDF
    We show that a string-inspired Planck scale modification of general relativity can have observable cosmological effects. Specifically, we present a complete analysis of the inflationary perturbation spectrum produced by a phenomenological Lagrangian that has a standard form on large scales but incorporates a string-inspired short distance cutoff, and find a deviation from the standard result. We use the de Sitter calculation as the basis of a qualitative analysis of other inflationary backgrounds, arguing that in these cases the cutoff could have a more pronounced effect, changing the shape of the spectrum. Moreover, the computational approach developed here can be used to provide unambiguous calculations of the perturbation spectrum in other heuristic models that modify trans-Planckian physics and thereby determine their impact on the inflationary perturbation spectrum. Finally, we argue that this model may provide an exception to constraints, recently proposed by Tanaka and Starobinsky, on the ability of Planck-scale physics to modify the cosmological spectrum.Comment: revtex, 8 pages, eps figures included, references adde

    Studies of new media radiation induced laser

    Get PDF
    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed

    Imprints of Short Distance Physics On Inflationary Cosmology

    Get PDF
    We analyze the impact of certain modifications to short distance physics on the inflationary perturbation spectrum. For the specific case of power-law inflation, we find distinctive -- and possibly observable -- effects on the spectrum of density perturbations.Comment: Revtex 4, 3 eps figs, 4 page

    On the Hagedorn Behaviour of PP-wave Strings and N=4 SYM Theory at Finite R-Charge Density

    Get PDF
    We discuss the high temperature behaviour of IIB strings in the maximally symmetric plane wave background, and show that there is a Hagedorn temperature. We discuss the map between strings in the pp-wave background and the dual superconformal field theory in the thermal domain. The Hagedorn bound describes a curve in the R-charge chemical potential versus temperature phase diagram of the dual Yang-Mills theory and the theory manifestly exists on both sides. Using a recent observation of Brower, Lowe, and Tan, we update our earlier calculation to reflect that the pp-wave string exists on both sides of the Hagedorn bound as well.Comment: 23 pages, LaTeX, 1 figure; v2 minor corrections and clarifications, references added; v3 nature of the Hagedorn transition updated, version published in NP

    Three-Family Supersymmetric Standard-like Models from Intersecting Brane Worlds

    Get PDF
    We construct the first three family N=1 supersymmetric string model with Standard Model gauge group SU(3)_C x SU(2)_L x U(1)_Y from an orientifold of type IIA theory on T^6/(Z_2 x Z_2) and D6-branes intersecting at angles. In addition to the minimal supersymmetric Standard Model particles, the model contains right-handed neutrinos, a chiral (but anomaly-free) set of exotic multiplets, and extra vector-like multiplets. We discuss some phenomenological features of this model.Comment: 4 pages, minor typos correcte

    Non-Minimal and Non-Universal Supersymmetry

    Get PDF
    I motivate and discuss non-minimal and non-universal models of supersymmetry and supergravity consistent with string unification at 101610^{16} GeV.Comment: 10 pages, Latex. Plenary talk given at 6th Workshop in High Energy Physics Phenomenology (WHEPP 6), Chennai (Madras), India, 3-15 Jan 200

    Toward Realistic Intersecting D-Brane Models

    Full text link
    We provide a pedagogical introduction to a recently studied class of phenomenologically interesting string models, known as Intersecting D-Brane Models. The gauge fields of the Standard-Model are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersections can give rise to chiral fermions. We address the basic issues and also provide an overview of the recent activity in this field. This article is intended to serve non-experts with explanations of the fundamental aspects, and also to provide some orientation for both experts and non-experts in this active field of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte

    Rapid Tunneling and Percolation in the Landscape

    Full text link
    Motivated by the possibility of a string landscape, we reexamine tunneling of a scalar field across single/multiple barriers. Recent investigations have suggested modifications to the usual picture of false vacuum decay that lead to efficient and rapid tunneling in the landscape when certain conditions are met. This can be due to stringy effects (e.g. tunneling via the DBI action), or by effects arising due to the presence of multiple vacua (e.g. resonance tunneling). In this paper we discuss both DBI tunneling and resonance tunneling. We provide a QFT treatment of resonance tunneling using the Schr\"odinger functional approach. We also show how DBI tunneling for supercritical barriers can naturally lead to conditions suitable for resonance tunneling. We argue using basic ideas from percolation theory that tunneling can be rapid in a landscape where a typical vacuum has multiple decay channels and discuss various cosmological implications. This rapidity vacuum decay can happen even if there are no resonance/DBI tunneling enhancements, solely due to the presence of a large number of decay channels. Finally, we consider various ways of circumventing a recent no-go theorem for resonance tunneling in quantum field theory.Comment: 47 pages, 16 figures. Acknowledgements adde

    3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Get PDF
    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or neutral pions from protons.Comment: 12 pages, 9 figures, accepted by Apj, 24 June 200
    • 

    corecore