42 research outputs found

    Multimodal Treatment in Metastatic Colorectal Cancer (mCRC) Improves Outcomes—The University College London Hospital (UCLH) Experience

    Get PDF
    Background: Despite notable advances in the management of metastatic colorectal cancer (mCRC) over the last two decades, treatment intent in the vast majority of patients remains palliative due to technically unresectable disease, extensive disease, or co-morbidities precluding major surgery. Up to 30% of individuals with mCRC are considered potentially suitable for primary or metastasis-directed multimodal therapy, including surgical resection, ablative techniques, or stereotactic radiotherapy (RT), with the aim of improving survival outcomes. We reviewed the potential benefits of multimodal therapy on the survival of patients with mCRC treated at the UCLH. Methods: Clinical data on baseline characteristics, multimodal treatments, and survival outcomes were retrospectively collected from all patients with mCRC receiving systemic chemotherapy between January 2013 and April 2017. Primary outcome was the impact of multimodal therapy on overall survival, compared to systemic therapy alone, and the effect of different types of multimodal therapy on survival outcome, and was assessed using the Kaplan–Meier approach. All analyses were adjusted for age, gender, and side of primary tumour. Results: One-hundred and twenty-five patients with mCRC were treated during the study period (median age: 62 years (range 19–89). The liver was the most frequent metastatic site (78%; 97/125). A total of 52% (65/125) had ≥2 lines of systemic chemotherapy. Of the 125 patients having systemic chemotherapy, 74 (59%) underwent multimodal treatment to the primary tumour or metastasis. Median overall survival (OS) was 25.7 months [95% Confidence Interval (CI) 21.5–29.0], and 3-year survival, 26%. Univariate analysis demonstrated that patients who had additional procedures (surgery/ablation/RT) were significantly less likely to die (Hazard Ratio (HR) 0.18, 95% CI 0.12–0.29, p < 0.0001) compared to those receiving systemic chemotherapy alone. Increasing number of multimodal procedures was associated with an incremental increase in survival—with median OS 28.4 m, 35.7 m, and 64.8 m, respectively, for 1, 2, or ≥3 procedures (log-rank p < 0.0001). After exclusion of those who received systemic chemotherapy only (n = 51), metastatic resections were associated with improved survival (adjusted HR 0.36, 95% CI 0.20–0.63, p < 0.0001), confirmed in multivariate analysis. Multiple single-organ procedures did not improve survival. Conclusion: Multimodal therapy for metastatic bowel cancer is associated with significant survival benefit. Resection/radical RT of the primary and resection of metastatic disease should be considered to improve survival outcomes following multidisciplinary team (MDT) discussion and individual assessment of fitness

    Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation

    Get PDF
    The ecology and physiology of ectomycorrhizal (EcM) symbiosis with conifer trees are well documented. In comparison, however, very little is known about the molecular regulation of these associations. In an earlier study, we identified three EcM-regulated Pinus expressed sequence tags (EST), two of which were identified as homologous to the Medicago truncatula nodulin MtN21. The third EST was a homologue to the receptor-like kinase Clavata1. We have characterized the expression patterns of these genes and of auxin- and mycorrhiza-regulated genes after induction with indole-3-butyric acid in Pinus sylvestris and in a time course experiment during ectomycorrhizal initiation with the co-inoculation of 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Our results suggest that different P. sylvestris nodulin homologues are associated with diverse processes in the root. The results also suggest a potential role of the Clv1-like gene in lateral root initiation by the ectomycorrhizal fungus

    Chiral matter wavefunctions in warped compactifications

    Full text link
    We analyze the wavefunctions for open strings stretching between intersecting 7-branes in type IIB/F-theory warped compactifications, as a first step in understanding the warped effective field theory of 4d chiral fermions. While in general the equations of motion do not seem to admit a simple analytic solution, we provide a method for solving the wavefunctions in the case of weak warping. The method describes warped zero modes as a perturbative expansion in the unwarped spectrum, the coefficients of the expansion depending on the warping. We perform our analysis with and without the presence of worldvolume fluxes, illustrating the procedure with some examples. Finally, we comment on the warped effective field theory for the modes at the intersection.Comment: 64 pages, 1 figure. References updated, typos fixed, discussion on varying dilaton case slightly modified. Version to appear in JHE

    Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana

    Get PDF
    Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >∼0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments

    Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    Get PDF
    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication

    Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice

    Get PDF
    Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families

    Modified carbon-containing electrodes in stripping voltammetry of metals

    Full text link
    corecore