42 research outputs found

    Thin flexible multi-octave metamaterial absorber for millimeter wavelengths

    Get PDF
    The development of radiation-absorbent materials and devices for millimeter and submillimeter astronomy instruments is a research area of significant interest that has substantial engineering challenges. Alongside a low-profile structure and ultra-wideband performance in a wide range of angles of incidence, advanced absorbers in cosmic microwave background (CMB) instruments are aimed at reducing optical systematics, notably instrument polarization, far beyond previously achievable specifications. This paper presents a metamaterial-inspired flat conformable absorber design operating in a wide frequency range of 80–400 GHz. The structure comprises a combination of subwavelength metal-mesh capacitive and inductive grids and dielectric layers, using the magnetic mirror concept for a large bandwidth. The overall stack thickness is a quarter of the longest operating wavelength and is close to the theoretical limit stipulated by Rozanov’s criterion. The test device is designed to operate at a 22.5° incidence. The iterative numerical-experimental design procedure of the new metamaterial absorber is discussed in detail, as well as the practical challenges of its manufacture. A well-established mesh-filter fabrication process has been successfully employed for prototype fabrication, which ensures cryogenic operation of the hot-pressed quasi-optical devices. The final prototype, extensively tested in quasi-optical testbeds using a Fourier transform spectrometer and a vector network analyzer, demonstrated performance closely matching the finite-element analysis simulations; that is, greater than 99% absorbance for both polarizations, with only a 0.2% difference, across the frequency band of 80-400 GHz. The angular stability for up to ±10∘ has been confirmed by simulations. To the best of our knowledge, this is the first successful implementation of a low-profile, ultra-wideband metamaterial absorber for this frequency range and operating conditions

    Reflective Toraldo pupil for high-resolution millimeter-wave astronomy

    Get PDF
    A novel, to the best of our knowledge, beam-shaping reflective surface for high-resolution millimeter/submillimeter-wave astronomy instruments is presented. The reflector design is based on Toraldo’s super-resolution principle and implemented with annulated binary-phase coronae structure inspired by the achromatic magnetic mirror approach. A thin, less than half a free-space wavelength, reflective Toraldo pupil device operated in the W-band has been fabricated using mesh-filter technology developed at Cardiff University. The device has been characterized on a quasi-optical test bench and demonstrated expected reduction of the beam width upon reflection at oblique incidence, while featuring a sidelobe level lower than −10dB. The proposed reflective Toraldo pupil structure can be easily scaled for upper millimeter and infrared frequency bands as well as designed to transform a Gaussian beam into a flat-top beam with extremely low sidelobe level

    Design and experimental investigation of a planar metamaterial Silicon based lenslet

    Get PDF
    The next generations of ground-based cosmic microwave background experiments will require polarisation sensitive, multichroic pixels of large focal planes comprising several thousand detectors operating at the photon noise limit. One approach to achieve this goal is to couple light from the telescope to a polarisation sensitive antenna structure connected to a superconducting diplexer network where the desired frequency bands are filtered before being fed to individual ultra-sensitive detectors such as Transition Edge Sensors. Traditionally, arrays constituted of horn antennas, planar phased antennas or anti-reflection coated micro-lenses have been placed in front of planar antenna structures to achieve the gain required to couple efficiently to the telescope optics. In this paper are presented the design concept and a preliminary analysis of the measured performances of a phase-engineered metamaterial flat-lenslet. The flat lens design is inherently matched to free space, avoiding the necessity of an anti-reflection coating layer. It can be fabricated lithographically, making scaling to large format arrays relatively simple. Furthermore, this technology is compatible with the fabrication process required for the production of large-format lumped element kinetic inductance detector arrays which have already demonstrated the required sensitivity along with multiplexing ratios of order 1000 detectors/channel

    On Passive Intermodulation Test of Analog and Digital Systems

    Get PDF
    corecore