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Abstract—The principle aspects of passive intermodulation 

(PIM) characterisation in distributed printed circuits with 

cascaded lumped nonlinearities are presented. Mechanisms of 
PIM generations have been investigated experimentally and 
modelled using the formalism of X-parameters. The devised 

equivalent circuit models are applied to the analysis of microstrip 
lines with distributed and cascaded lumped sources of 
nonlinearity. The dynamic measurements have revealed that PIM 

generation rates in straight and meandered microstrip lines differ 
and significantly deviate from those expected for the respective 
discrete sources of nonlinearity. The obtained results indicate that 

multiple physical sources of nonlinearity contribute to PIM 
generation in printed circuits. Finally, it is demonstrated that the 
electrical discontinuities can have significant effect on the overall 

PIM response of the distributed passive circuits and cause PIM 
product leakage and parasitic coupling between isolated circuit 
elements. 

 Keywords—intermodulation distortion; passive 
intermodulation (PIM); distributed nonlinearity; X-parameters, 

interference 

I.  INTRODUCTION 

Intermodulation (IM) is conventionally defined as a 

phenomenon characterised by appearance of additional spectral 

components in the output spectrum of a multi-carrier system, 

which are not present in the original input signal [1]. Passive 

intermodulation (PIM) caused by weak nonlinearities may 

significantly distort signals and severely degrade the receiver 

sensitivity, ultimately resulting in dramatic reduction of data 

throughputs in wireless communication systems.  

The signal integrity specifications in the base stations for 

mobile and space communications impose very stringent 

requirements to the PIM performance of RF front-end passive 

devices such as multiband antenna arrays, beamforming 

networks, phase shifters and filters. Majority of these devices 

are designed without preliminary assessment of their PIM 

performance which is later measured experimentally in a basic 

two-tone CW verification tests. However, such a procedure 

often leads to multiple design iterations to meet the required 

PIM specifications. Nor does it allow for location of the PIM 

sources and characterisation of the nonlinearity. Therefore, it is 

of high importance to incorporate the PIM analysis into the 

antenna and whole RF front-end design process and develop 

reliable predictive models of PIM generation. 

PIM generation in antennas and passive RF components, 

such as connectors, coaxial cables, filters, duplexers and printed 

circuit boards, has been investigated in the past. The main 

causes of passive nonlinearities are usually associated with the 

contact effects, soldered joints, electro-thermal phenomena, 

ferroic materials and protective coatings.  

Nonlinearities can be localised (e.g. due to contact effects) 

or distributed (e.g. due to nonlinear resistivity of signal tracks 

or substrate polarisability in printed circuits). Moreover, several 

commensurable sources of PIM generation may co-exist in one 

circuit. In this case, accurate identification of all physical 

sources is required for proper model retrieval. 

In this paper, the mechanisms of PIM generations in printed 

transmission lines (TL) have been investigated experimentally 

and modelled using the formalism of X-parameters. The 

devised equivalent circuit models have been applied to the 

analysis of microstrip lines with distributed and cascaded 

lumped sources of nonlinearity. To assess the effect of printed 

TL layout on PIM generation rate, the dynamic PIM 

measurements have been carried in the straight and meandered 

microstrip lines. The paper is organised as follows. The 

experimental setup and test specimens are described in Section 

II. The effects of PIM generations in the microstrip TL with a 

single and pair of cascaded lumped nonlinearities are discussed 

in Section III. The X-parameter based model of distributed PIM 

generation in the TL is outlined in Section IV and a means of 

discriminating lumped and distributed PIM sources are 

discussed Section V. The results of dynamic measurements of 

PIM products in the straight and meandered microstrip TL are 

discussed in Section VI and the main findings are summarised 

in Conclusion.     

II. EXPERIMENTAL SETUP 

A commercial Rosenberger two-tone PIM analyser IM-

209S [2] has been used for single port measurements of reverse 

PIM. The analyser calibration was verified with a standard 

−110 dBm EGSM PIM source. The residual level of the third-

order PIM (PIM3) products in the test setup was measured at 

−120 dBm for 243 dBm carriers.  

The PIM measurements were carried out at the input port of 

the transmission line under test terminated in a matching low-

PIM load. The test setup was deployed in a screened anechoic 

chamber and special care was taken to protect the board surface 

and connectors from contamination by dust of Radar Absorbing 
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Material (RAM), which proved to have a strong impact on the 

PIM results. In some instances, the PIM analyser failed to 

display the actual PIM level, presumably due to the locked-in 

sources, so any abnormalities in PIM results were carefully 

assessed to eliminate the measurement artefacts. 

Test specimens of microstrip lines were fabricated on a 

single panel of the TLG-30 board (εr = 3.0, tanδ = 0.0026, 

laminate thickness h = 0.76 mm and low-profile copper foil of 

thickness t =17.5um) with the dominant substrate nonlinearity. 

The signal strips of width 1.9 mm provided the characteristic 

impedance of 50 . The specimen set included: 

- Two straight uniform lines of lengths 502 mm and 

914 mm labelled “S502” and “S914”, respectively 

- Two meandered uniform lines of total lengths 1515 mm 

and 1955 mm labelled “M1515” and “M1955”, 

respectively as shown in Fig. 1.  

In order to investigate the effect of multiple PIM sources in 

printed circuits, the measurements have been carried out first 

with discrete sources of nonlinearities placed on the top of 

signal strips of the tested microstrip lines.        

III. CASCADED LUMPED NONLINEARITIES  

PIM products generated by localised nonlinearities in 

microstrip lines form interference pattern which varies with the 

distance between the PIM sources. To illustrate this effect, 

lumped nonlinearities were emulated in the S914 line by 

placing pieces of paper with small pencil marks of size 22 

mm2 on top of the microstrip tracks. In a small signal regime, 

no discernible effect of such inclusions on the linear S-

parameters was detected. However, when 243 dBm carriers of 

frequencies f1 = 935 MHz and f2 = 960 MHz were injected into 

the microstrip line, level of the reverse PIM3 products of 

frequency 910 MHz increased from −100 dBm in the original 

bare line to −63 dBm in the line with an artificial PIM source.  

Then a pair of almost identical pencil marks spaced apart 

for l was placed on the strip conductor at distances ls = 30 cm 

and (ls - l) from the input. The reverse PIM level versus 

variable spacing l between the pencil marks is shown in Fig. 

2 at PIM3 frequency of 910 MHz. This plot demonstrates that 

maxima and minima of PIM3 level are offset for a quarter of 

the wavelength of PIM3 products in the microstrip line 

( ≈ 21.2 cm at frequency of 910 MHz). This provides a clear 

evidence of the interference pattern of PIM3 products generated 

by the two lumped sources. It can also be observed that the peak 

level of the PIM3 in Fig. 2 is slightly lower as the second source 

is farther away from input, cf. PIM3 levels at l = 20 cm and 

l = 10 cm.  

The interference patterns created by the artificial localised 

PIM sources can be instrumental for detecting lumped 

nonlinearities in distributed circuits, e.g. contact nonlinearity of 

launchers or soldered joints in antenna feed network. Indeed, if 

a lumped PIM source of magnitude commensurate with the PIM 

level in a test sample is placed on the top of signal strip and 

moved along the printed line under test, the resulting pattern of 

reverse PIM similar to that in Fig. 2 would imply the presence 

of internal localised PIM sources in the test line as further 

detailed in Section V. The concept of cascading closely spaced 

lumped nonlinearities can also be applied to modelling PIM in 

TL with distributed nonlinearities.  

IV. DISTRIBUTED PIM GENERATION 

Weakly nonlinear distributed system can be described as 

cascaded circuits with lump nonlinearities. The X-parameters 

are particularly instrumental for this purpose [4], [5]. In order 

to apply the X-parameter formalism to the analysis of PIM 

generation by passive devices with distributed nonlinearities, 

the actual physical structure should be partitioned in a set of 

primitive constituent unit cells. Once an electrical size of the 

unit cell is much smaller than a wavelength, each cell can be 

described by a lumped element equivalent circuit. For example, 

linear RLC networks are often used for the analysis of the TLs, 

canonical discontinuities and their assemblies. Such models can 

be applied to the analysis of PIM generation in complex 

networks with multiple nonlinearities using the X-parameters. 

The required circuit characteristics of particular physical 

sources of nonlinearity can be retrieved from multi-parameter 

data fitting for the measured test standards.   

Our equivalent circuit model of the nonlinear TL has been 

validated against the characteristic features of distributed PIM 

generation in the degenerative four-wave mixing, such as a 

cumulative growth of the forward PIM products towards the TL 

output and regular undulations of the reverse PIM level [3], [7] 

at the input. A section of uniform nonlinear microstrip line has 

been analysed using the Harmonic Balance solver in the Agilent 

ADS simulator. The TL has been partitioned in short segments, 

each described by an equivalent RLC circuit shown in Fig. 3. 

The nonlinear capacitor on the schematic represents a weak 

nonlinearity of the substrate.  

 

Fig. 1. Printed layout of the meandered lines with the dimensions in mm:  

         L=914; W=1.9; Ws=87; Wd=85.1; L1=350; L2=42.6; L3=460; L4=29.9 

 
Fig. 2. Dependency of the reverse PIM3 products on the pencil mark location. 
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The electrical length of each unit cell in Fig. 3, defined in 

terms of the phase shift, has been chosen at 2° that provides 

better than 20 dB return loss in the frequency range from DC to 

3 GHz. The forward and reverse PIM3 products are generated 

by two CW tones of frequencies f1 = 935 MHz and 

f2 = 960 MHz with power levels of 44 dBm. To realise the 2° 

phase shift at PIM3 frequency 2f1-f2 = 910 MHz the circuit 

elements had the following parameters: L0 = 0.154 nH, 

G = 3×10-5 S, C0 = 0.123 pF. The nonlinear capacitance 

C2 = 2.1×10-11 pF/V2 was chosen compatible with the 

experimental data reported in [3], [6], [7].  

The calculated magnitudes of PIM3 products are shown in 

Fig. 4 in dependence of the electrical length θ of the nonlinear 

TL. Comparison of the simulated and measured forward PIM3 

products in Fig. 4(a) demonstrates their very good correlation. 

Both curves exhibit similar rates of the cumulative growth of 

forward PIM3 products with the line length. The decaying 

periodic undulations of the reverse PIM3 level in Fig. 4(b) are 

in agreement with the analytical model of distributed PIM 

generation in [7].  

The presented lumped element model of the TL with 

distributed nonlinearity is next applied to discrimination of 

lumped and distributed PIM sources in transmission lines.   

V. DISCRIMINATION OF THE LUMPED AND DISTRIBUTED 

NONLINEARITIES IN TRANSMISSION LINES 

The approach described in Section IV is equally applicable 

to modelling nonlinear TLs containing lumped nonlinearities. 

To this aim, let us consider a reference nonlinear transmission 

line of electrical length θ2 = 900° described by the same model 

in Fig. 3. In the following simulations the nonlinear capacitance 

C2 is presumed constant (C2 = 2.1×10-14 pF/V2).  

A weak lumped nonlinearity is assumed in input microstrip 

launcher and it is represented by a nonlinear capacitor 

C' = C0' + C2'U2 where C0' = 5.2×10-3 pF is fixed and its value 

is chosen to limit variations of the small-signal S-parameters, 

i.e. the TL with the lumped nonlinearity remains matched. In 

practice, the value of C2' is unknown a priory and in our 

experiment we have considered different scenarios by varying 

C2' in the range from 0 to 9×10-9 pF/V2.  

Pencil mark is used as a probe nonlinearity to identify the 

mechanism of PIM generation in the test TL, i.e. discriminate 

distributed or localised sources. The convenience of the pencil 

mark as a PIM source is associated with the fact that it can be 

easily adjusted to produce the nonlinear response 

commensurate with the PIM level of the test specimen with 

combined distributed (fixed) and localised (launcher contact) 

nonlinearities. Besides, a pencil mark does not introduce any 

electrical discontinuity, so for ease of the analysis below we use 

the capacitor model of the pencil mark similar to that of the 

microstrip launcher but with a different value of the 

nonlinearity. The latter is chosen to provide ~ 5 dB higher 

forward PIM when we insert the pencil mark in the TL with a 

given launcher nonlinearity.    

Once the pencil mark is moved along the transmission line 

and the reverse PIM3 level is recorded at each probe position at 

distance l (in degrees at 910 MHz) from input port. The 

simulated forward and reverse PIM3 magnitudes at frequency 

of 910 MHz (the carriers of 243 dBm power at frequencies 

f1 = 935 MHz and f2 = 960 MHz were applied) are shown in 

Fig. 5 in dependence of the pencil mark position.  

The three curves in Fig. 5 correspond to different values of 

the launcher nonlinearity. The pencil mark nonlinearity in each 

case is chosen as described above. As one can observe, 

undulations of the reverse PIM3 level strongly depend on the 

strength of the launcher nonlinearity, relative to the distributed 

nonlinearity of the reference TL - the higher the launcher 

nonlinearity, the greater undulations. Moreover, the position of 

a lumped nonlinearity with reference to the TL input can also 

be located with the aid of the nonlinear probe, provided that the 

nonlinearity is strong enough. 

VI. DYNAMIC CHARACTERISTICS OF PIM3 PRODUCTS IN 

PRINTED TL WITH DISCONTINUITIES  

Dynamics of PIM generation, i.e. PIM product dependence 

on carrier power and frequency, usually provides a distinctive 

signature of the dominant source of nonlinearity. The PIM 

growth rate with carrier power is fundamentally related to the 

underlying physical mechanisms of PIM generation. Similarly, 

frequency sweep can identify particular types of nonlinearity.  

 

R=1/G C=C0+C2U
2
 

L0 L0 

 

Fig. 3. Unit cell of nonlinear transmission line 

 
 a) 

 
 b) 

Fig. 4. Forward (a) and reversed (b) PIM3 products versus electrical length of 
the nonlinear transmission line.  
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The effect of carrier input power on PIM3 performance of 

straight and meandered microstrip lines has been investigated 

with the test specimens specified in Section II. Fig. 6 shows the 

reverse PIM3 magnitude versus carrier power for the 4 

measured samples. It is noteworthy that at the carrier power in 

the range 36 - 46 dBm, PIM3 products generated in the 

measured microstrip lines are already close to saturation [3]. 

Therefore, the interpolated slope of the PIM3 in Fig. 6 is smaller 

than the classical 3:1, as earlier observed in [8]-[11].   

However, the experimental curves in Fig. 6 exhibit a 

peculiar feature of intersection point at input carrier power of 

36 dBm. In addition, the PIM3 slopes for the two meandered 

TL considerably differ from those for the straight TL. Our 

simulations with the basic polynomial models show that such 

behaviour cannot be explained by the effect of the line length 

only. On the other hand, it has been suggested elsewhere that 

the use of non-analytical polynomials can help reproduce the 

observed trends see, e.g., [11], Error! Reference source not 

found.. Nevertheless, the polynomial models of PIM 

generation still can be used, but they need further extension to 

include other mechanisms of nonlinearity and higher order 

approximations. Additional experimental studies are necessary 

to verify these conjectures and provide consistent and reliable 

experimental results.  

To gain deeper insight in the dynamic characteristics of PIM 

generation, reverse PIM3 products have been measured in the 

sweep frequency mode at several fixed levels of carrier power. 

Frequency of one carrier had been fixed at f2 = 960 MHz whilst 

the other carrier frequency f1 was swept in the range 925 – 

937 MHz. The measurement results at PIM3 frequency 

f3 = 2f1 – f2 are shown in Fig. 7 for both straight and meandered 

TL at variable carrier power.   

Only minor variations of reverse PIM3 level across the 

measured frequency band are observed in Fig. 7, especially at 

lower power level of the carriers. This is conventionally 

interpreted as manifestation of memoryless nonlinearity. 

However, the effect of dynamic nonlinearities can be clearly 

observed at higher power of carriers. Moreover, the dynamics 

of PIM3 generation in the meandered TL distinctively differ 

from that in the straight TL. This indicates significant effect of 

the conductor layout on the interference patterns of the carriers 

and PIM3 products in the meandered lines, particularly near the 

strip bends. Also, cross-coupling between parallel sections of 

the meandered lines may alter reverse PIM3 response at input 

ports. 

CONCLUSION AND DISCUSSIONS 

Mechanisms of PIM generations in printed TL have been 

investigated experimentally and modelled using the formalism 

of X-parameters. The devised equivalent circuit models have 

been applied to the analysis of microstrip lines with distributed 

and cascaded lumped sources of nonlinearity. Microstrip TLs 

of different length and geometry were simulated and measured 

using a single-port PIM analyser. It has been shown that the line 

length and the presence of several cascaded lumped 

nonlinearities strongly influence the overall PIM level. It was 

also demonstrated that discontinuities can cause additional PIM 

products which alter the nonlinear response of the distributed 

circuit due to the interference with other sources. The measured 

reverse PIM3 products generated by cascaded nonlinearities in 

microstrip lines proved to be in full correlation with the 

simulations based upon the principles of phase synchronism. 

These results have provided explicit evidences that the 

distributed PIM generation in printed circuits fundamentally 

depends on the phase coherence of carriers and PIM products. 

Experimental demonstration of this effect has important 

 
 a) 

 
 b) 

Fig. 5. Simulated forward (a) and reverse (b) PIM3 products versus pencil 
mark position.  

 
Fig. 6. Reverse PIM3 measurements at PIM3 frequency of 910 MHz vs. 

carrier’s power. The carrier’s power P represents the mean power of the 

two carriers. Straight lines P3 are only eye guide to indicate the slope of 
PIM3 products for each test specimen. 
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implications for integrity of the phase modulated signals in base 

station antennas and RF front-end.  

 

The dynamic PIM measurements have revealed that PIM3 

generation rates in the straight and meandered microstrip lines 

differ and significantly deviate from those anticipated for the 

respective discrete sources of nonlinearity. These results 

indicate that multiple physical sources of nonlinearity 

contribute to PIM generation in printed circuits. Extensive 

experimental investigations are still necessary to identify and 

quantify the mechanisms of PIM generation in the microstrip 

lines with complex conductor layouts and combinations of the 

discrete and distributed nonlinearities. Further experiments are 

also necessary to explore the effects of localised discontinuities, 

PIM leakage and cross-coupling between the circuit elements 

in complex printed layouts. 
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b) 

c) 

d) 

Fig. 7. Measured reverse PIM3 products versus swept frequency f3 at carriers’ 
power variable in the range 36 dBm – 46 dBm on the samples: a) S502, 

b) S914, c) M1515 and d) M1955. 
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