251 research outputs found

    Measurement of young's modulus and hardness of Al-50 wt % Sn alloy phases using nanoindentation

    Full text link
    The nanoindentation method was used to measure the Young's modulus and hardness of the phases of the alloy Al-50 wt % Sn: α-aluminum and eutectic. Samples are obtained in different ways, i.e., traditionally via the transition of the melt into a homogeneous structural state by heating to a certain temperature, followed by cooling using the cooling rate greater by the order than that of the traditional method and via the addition of 0.06 wt % Ti and 1 wt % Zr to the binary alloy. It has been found that the most significant effect of the Al-50 wt % Sn phases on the Young's modulus is the transition of the melt into a homogeneous structural state and the introduction of Zr into the melt. As part of the mathematical theory of elasticity, a numerical evaluation of the interfacial pressure that arises due to the difference between Young's modulus of α aluminum and eutectic has been performed. The calculation has showed that the extra pressure is nine times less for the alloy formed through the transition of the melt into a homogeneous structural state than for the alloy produced via a traditional way. © 2013 Pleiades Publishing, Ltd

    ИССЛЕДОВАНИЕ ВЛИЯНИЯ СТРУКТУРНОГО СОСТОЯНИЯ РАСПЛАВА НА КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ФАЗ СПЛАВА AL-50 МАС.%SN МЕТОДОМ НАНОИНДЕНТИРОВАНИЯ

    Full text link
    Nanoindentation is used to measure Young's modulus, the hardness, the plasticity, and the yield strength of the phases in Al-50 wt % Sn alloy samples prepared by a traditional method and using liquid-state homogenization. The effect of an increase in the cooling rate by an order of magnitude and alloying with 0.06 wt % Ti or 1 wt % Zr on the mechanical properties of the phases in the Al-50 wt % Sn alloy is studied. The most substantial effect on Young's modulus of the phases in the Al-50 wt % Sn alloy is found to be exerted by the homogenization of the metallic liquid and the introduction of zirconium in the alloy melt: the metal forming of an ingot is improved substantially. © 2013 Pleiades Publishing, Ltd

    THE INFLUENCE OF PHYSICAL METHODS OF VEGETABLES PROCESSING ON THE QUALITY OF FROZEN PRODUCTS

    Get PDF
    The indicators of quality and microbiological safety of frozen vegetable semi-finished products (for example, cut beet) processed in a microwave field for subsequent storage for 18 months at a temperature of minus 20±2 °C. Treatment with a microwave field was carried out under the following conditions: power 600 W and duration 5 min (180 kJ); power 1000 W and duration 4 min (240 kJ). It is established that treatment in the microwave field contributes to the preservation of consumer qualities of the product (total solids content, mass fraction of soluble solids, bound moisture content, microbiological effect) in the process of long-term low-temperature storage.The indicators of quality and microbiological safety of frozen vegetable semi-finished products (for example, cut beet) processed in a microwave field for subsequent storage for 18 months at a temperature of minus 20±2 °C. Treatment with a microwave field was carried out under the following conditions: power 600 W and duration 5 min (180 kJ); power 1000 W and duration 4 min (240 kJ). It is established that treatment in the microwave field contributes to the preservation of consumer qualities of the product (total solids content, mass fraction of soluble solids, bound moisture content, microbiological effect) in the process of long-term low-temperature storage

    Maintenance of potato varieties in <i>in vitro</i> and field collections of the Russian Potato Research Centre

    Get PDF
    The main biological feature of potato varieties is vegetative reproduction. This mode of reproduction can be associated with problems due to the physiological ageing of the crop and the accumulation of specific pathogens causing reduced tuber yields. In order to avoid these problems, potato seed production widely uses modern biotechnological methods. The use of meristemic technologies allows preserving the identity of the biomaterial in the process of maintaining the potato collection in vitro, but even under these conditions there is a threat that modifications of individual economically valuable traits may get fixed. In potato varieties, such non-heritable deviations manifest themselves in the form of a shift in phenophases and the period of tubers ripening. The use of modern high-tech methods of varietal resources storage implemented on the basis of biotechnological approaches, makes it possible to maintain high quality of biomaterial. At the same time, mobility and practicality remain the main criteria for the effectiveness of different storage methods, depending on the extent to which they can be used in practice. In this review, the collection of varieties at Russian Potato Research Center is used as an example for considering the main stages of the formation and functioning of a modern Bank of Healthy Potato Varieties (BHPV), which supplies various regions of the Russian Federation with high-quality phytopathogen-free potato varieties

    Hemodynamics monitoring in sport: Using hemodynamic monitor for sport training planning

    Full text link
    The study stresses the meaning of the physiological measures that are obtained with the functional diagnostics devices and how these values can be used in coaching sportsmen. Methods: Hemodynamic monitor was used for monitoring hemodynamics and heart function of athletes (n=305) with different fitness levels. Active orthoclinostatic tests and antiorthostatic tests with passive body position changing were carried out with hemodynamics measurements recorded. Results: The most informative indicators and indices of heart function for high performance sport and their values at rest were detected. Along with common hemodynamics indicators (HR, SV, CO, EDV, blood pressure, etc.) the possibility of using correlation rhythmogram in coaching was studied. The correlation rhythmogram "cloud" dependence on athletes' fitness level was revealed in transient during active orthoclinostatic test

    Complexation of thiacalix[4]arene methylphosphonic and sulphonic acids with amino acids

    Get PDF
    In this paper, host-guest complexation process of thiacalix[4]arene tetrakis-methylphosphonic and tetrakis-sulphonic acids with amino acids by HPLC and molecular modelling methods has been studied. It was shown that thiacalix[4]arene tetrakis-methylphosphonic acid due to transformability of macrocyclic skeleton and flexibility of methylphosphonic substituents can adopt its conformation for strong multicentre binding of the amino acids with association constant values 530-10,140 M-1 in water. © 2013 Taylor & Francis Group, LLC

    Theoretical study about L-arginine complexes formation with thiotriazolin

    Get PDF
    Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA) and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water) dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine) it is possible to show the possibility to form ternary complexes with low stability in infinite dilute solutions. It should be noted that two negative charges are always localized in formed complexes on the deprotonated carboxyl groups. The positive charges are located either on the guanidine moiety and the a-amino group of L-arginine, or on the guanidine moiety of L-arginine and protonated molecule of morpholine. It can be expected that the strengthening of intermolecular interactions in the real solutions may result in increased stability of the complexes

    Bis(N-{bis­[meth­yl(phen­yl)amino]phos­phor­yl}-2,2,2-trichloro­acetamide)di­nitrato­dioxidouranium(VI)

    Get PDF
    In the title compound, [UO2 L 2(NO3)2] {L = N-{bis­[meth­yl(phen­yl)amino]phosphor­yl}-2,2,2-trichloro­acetamide, C16H17Cl3N3O2P}, the UVI ions are eight-coordinated by axial oxido ligands and six equatorial O atoms from the phosphoryl and nitrate groups in a distorted hexa­gonal–bipyramidal geometry. There are disordered fragments in the two coordinating L ligands: the trichloro­methyl group is rotationally disordered between two orientations [occupancy ratio 0.567 (15):0.433 (15)] in one ligand, and a meth­yl(phen­yl)amine fragment is disordered over two conformations [occupancy ratio 0.60 (4):0.40 (4)] in the other ligand. In the crystal structure, intra­molecular N—H⋯O hydrogen bonds between the amine and nitrate groups are observed

    Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    Get PDF
    As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient \beta(T). More precisely, it is the nonlinear T-dependence of the density \rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table

    The transcription factor dFOXO controls the expression of insulin pathway genes and lipids content under heat stress in <i>Drosophila melanogaster</i>

    Get PDF
    The insulin/insulin-like growth factor signaling (IIS) pathway is one of the key elements in an organism’s response to unfavourable conditions. The deep homology of this pathway and its evolutionary conservative role in controlling the carbohydrate and lipid metabolism make it possible to use Drosophila melanogaster for studying its functioning. To identify the properties of interaction of two key IIS pathway components under heat stress in D. melanogaster (the forkhead box O transcription factor (dFOXO) and insulin-like peptide 6 (DILP6), which intermediates the dFOXO signal sent from the fat body to the insulin-producing cells of the brain where DILPs1–5 are synthesized), we analysed the expression of the genes dilp6, dfoxo and insulin-like receptor gene (dInR) in females of strains carrying the hypomorphic mutation dilp641 and hypofunctional mutation foxoBG01018. We found that neither mutation influenced dfoxo expression and its uprise under short-term heat stress, but both of them disrupted the stress response of the dilp6 and dInR genes. To reveal the role of identified disruptions in metabolism control and feeding behaviour, we analysed the effect of the dilp641 and foxoBG01018 mutations on total lipids content and capillary feeding intensity in imago under normal conditions and under short-term heat stress. Both mutations caused an increase in these parameters under normal conditions and prevented decrease in total lipids content following heat stress observed in the control strain. In mutants, feeding intensity was increased under normal conditions; and decreased following short-term heat stress in all studied strains for the first 24 h of observation, and in dilp641 strain, for 48 h. Thus, we may conclude that dFOXO takes part in regulating the IIS pathway response to heat stress as well as the changes in lipids content caused by heat stress, and this regulation is mediated by DILP6. At the same time, the feeding behaviour of imago might be controlled by dFOXO and DILP6 under normal conditions, but not under heat stress
    corecore