40 research outputs found

    Unequal Perylene Diimide Twins in a Quadruple Assembly

    Get PDF
    Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.</p

    Social media and sensemaking patterns in new product development: demystifying the customer sentiment

    Get PDF
    Artificial intelligence by principle is developed to assist but also support decision making processes. In our study, we explore how information retrieved from social media can assist decision-making processes for new product development (NPD). We focus on consumers’ emotions that are expressed through social media and analyse the variations of their sentiments in all the stages of NPD. We collect data from Twitter that reveal consumers’ appreciation of aspects of the design of a newly launched model of an innovative automotive company. We adopt the sensemaking approach coupled with the use of fuzzy logic for text mining. This combinatory methodological approach enables us to retrieve consensus from the data and to explore the variations of sentiments of the customers about the product and define the polarity of these emotions for each of the NPD stages. The analysis identifies sensemaking patterns in Twitter data and explains the NPD process and the associated steps where the social interactions from customers can have an iterative role. We conclude the paper by outlining an agenda for future research in the NPD process and the role of the customer opinion through sensemaking mechanisms

    The protective effect of lipid emulsion in preventing bupivacaine-induced mitochondrial injury and apoptosis of H9C2 cardiomyocytes

    No full text
    Lipid emulsion (LE) has been shown to be effective in the resuscitation of bupivacaine-induced cardiac arrest, but the precise mechanism of this action has not been fully elucidated. Pursuant to this lack of information on the mechanism in which LE protects the myocardium during bupivacaine-induced toxicity, we explored mitochondrial function and cell apoptosis. H9C2 cardiomyocytes were used in study. Cells were randomly divided in different groups and were cultivated 6 h, 12 h, and 24 h. The mitochondria were extracted and mitochondrial ATP content was measured, as was mitochondrial membrane potential, the concentration of calcium ion (Ca2+), and the activity of Ca2+-ATP enzyme (Ca2+-ATPase). Cells from groups Bup1000, LE group, and Bup1000LE were collected to determine cell viability, cell apoptosis, and electron microscopy scanning of mitochondrial ultrastructure (after 24 h). We found that LE can reverse the inhibition of the mitochondrial function induced by bupivacaine, regulate the concentration of calcium ion in mitochondria, resulting in the protection of myocardial cells from toxicity induced by bupivacaine

    Mechanism of the efflux transport of demethoxycurcumin-O-glucuronides in HeLa cells stably transfected with UDP-glucuronosyltransferase 1A1.

    No full text
    Demethoxycurcumin (DMC) is a safe and natural food-coloring additive, as well as an agent with several therapeutic properties. However, extensive glucuronidation in vivo has resulted in its poor bioavailability. In this study, we aimed to investigate the formation of DMC-O-glucuronides by uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) and its transport by breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in HeLa cells stably transfected with UGT1A1 (named HeLa1A1 cells). The chemical inhibitors Ko143 (a selective BCRP inhibitor) and MK571 (a pan-MRP inhibitor) both induced an obvious decrease in the excretion rate of DMC-O-glucuronides and a significant increase in intracellular DMC-O-glucuronide concentrations. Furthermore, BCRP knock-down resulted in a marked reduction in the level of excreted DMC-O-glucuronides (maximal 55.6%), whereas MRP1 and MRP4 silencing significantly decreased the levels of excreted DMC-O-glucuronides (a maximum of 42.9% for MRP1 and a maximum of 29.9% for MRP3), respectively. In contrast, neither the levels of excreted DMC-O-glucuronides nor the accumulation of DMC-O-glucuronides were significantly altered in the MRP4 knock-down HeLa cells. The BCRP, MRP1 and MRP3 transporters were identified as the most important contributors to the excretion of DMC-O-glucuronides. These results may significantly contribute to improving our understanding of mechanisms underlying the cellular disposition of DMC via UGT-mediated metabolism

    Single-neuron whole genome sequencing identifies increased somatic mutation burden in Alzheimer\u27s disease related genes

    No full text
    Accumulation of somatic mutations in human neurons is associated with aging and neurodegeneration. To shed light on the somatic mutational burden in Alzheimer\u27s disease (AD) neurons and get more insight into the role of somatic mutations in AD pathogenesis, we performed single-neuron whole genome sequencing to detect genome-wide somatic mutations (single nucleotide variants (SNVs) and Indels) in 96 single prefrontal cortex neurons from 8 AD patients and 8 elderly controls. We found that the mutational burden is ∼3000 somatic mutations per neuron genome in elderly subjects. AD patients have increased somatic mutation burden in AD-related annotation categories, including AD risk genes and differentially expressed genes in AD neurons. Mutational signature analysis showed somatic SNVs (sSNVs) primarily caused by aging and oxidative DNA damage processes but no significant difference was detected between AD and controls. Additionally, functional somatic mutations identified in AD patients showed significant enrichment in several AD-related pathways, including AD pathway, Notch-signaling pathway and Calcium-signaling pathway. These findings provide genetic insights into how somatic mutations may alter the function of single neurons and exert their potential roles in the pathogenesis of AD
    corecore