45 research outputs found

    On the interaction between human IQGAP1 and actin

    Get PDF
    DM thanks the School of Biological Sciences, Queen’s University, Belfast for a summer studentship and EH thanks the Department of Employment and Learning, Northern Ireland for a postgraduate studentship. The work was funded in part by grants from the BBSRC (BB/D000394/1 To DJT) and by the Wellcome Trust [grant number GR06281AIA] which funded the purchase of the QStar XL mass spectrometer at the BBSRC Mass Spectrometry and Proteomics Facility, University of St Andrews and funded SLS.IQGAPs are eukaryotic proteins which integrate signals from various sources and pass these on the cytoskeleton. Understanding how they do this requires information on the interfaces between the proteins. Here, it is shown that the calponin homology domain of human IQGAP1 (CHD1) can be crosslinked with α-actin. The stoichiometry of the interaction was 1:1. A molecular model was built of the complex and associated bioinformatics analyses predicted that the interaction is likely to involve an electrostatic interaction between Lys-240 of α-actin and Glu-30 of CHD1. These residues are predicted to be accessible and are not involved in many intra-protein interactions; they are thus available for interaction with binding partners. They are both located in regions of the proteins which are predicted to be flexible and disordered; interactions between signalling molecules often involve flexible, disordered regions. The predicted binding region in CHD1 is well conserved in many eukaryotic IQGAP-like proteins. In some cases (e.g Dictyostelium discoideum and Saccharomyces cerevisiae) protein sequence conservation is weak, but molecular modelling reveals that a region of charged, polar residues in a flexible N-terminus is structurally well conserved. Therefore we conclude that the calponin homology domains of IQGAP1-like proteins interact initially through the electrostatic interaction identified here and that there may be subsequent conformational changes to form the final complex.PostprintPeer reviewe

    Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection

    Get PDF
    Funding: This work was funded by a European Research Council Advanced Grant (grant number 101018608) to M.F.W. L.K. was funded by an EMBO postdoctoral fellowship (grant number ALTF 234-2022). L.G.-M. was funded by the UKRI Biotechnology and Biological Sciences Research Council (BBSRC) (grant number BB/T00875X/1).Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase–PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.Peer reviewe

    Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    Get PDF
    This study was supported by Wellcome Trust Grant 099220/B/12/Z (to R.M.E.) and Grant 094476/Z/10/Z that funded the purchase of the TripleTOF 5600 mass spectrometer at the Biomedical Sciences Research Complex (BSRC) of University of St. Andrews.Bunyamwera virus (BUNV) is the prototype of the Orthobunyavirus genus and Bunyaviridae family that contains important human and animal pathogens. The cleavage mechanism of orthobunyavirus glycoprotein precursor (GPC) and the host proteases involved have not been clarified. Here we found that NSm and Gc contain their own internal signal peptides, which mediate the GPC cleavage by host signal peptidase and signal peptide peptidase (SPP). Furthermore, the NSm domain-I plays an important postcleavage role in cell fusion. Our data clarified the implication of host proteases in the processing of the orthobunyavirus GPC. This work identifies SPP as a potential intervention target, and the knowledge we gained will benefit preventive strategies against other orthobunyavirus infections.PostprintPeer reviewe

    Tumour-associated antigenic peptides are present in the HLA class I ligandome of cancer cell line derived extracellular vesicles

    Get PDF
    Funding: Breast Cancer Now (Grant Number(s): 2018JulPR1086), Wellcome Trust (GrantNumber(s): 105621/Z/14/Z), Melville Charitable Trust.The recent success of monoclonal antibody checkpoint inhibitor therapies that enhance the ability of CD8+ T cells to detect cancer-related antigenic peptides has refocused the need to fully understand the repertoire of peptides being presented to the immune system. Whilst the peptide ligandome presented by cell surface human leucocyte antigen class I (HLA-I) molecules on cancer cells has been studied extensively, the ligandome of extracellular vesicles (EVs) remains poorly defined. Here we report the HLA-I ligandome of both the cell surface and EVs from eight breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-453, HCC 1806, HCC 1395, and HCC 1954), and additionally the melanoma cell line ESTDAB-056 and the multiple myeloma line RPMI 8226. Utilising HLA-I immunoisolation and mass spectrometry, we detected a total of 6574 peptides from the cell surface and 2461 peptides from the EVs of the cell lines studied. Within the EV HLA-I ligandome, we identified 150 peptides derived from tumour associated antigenic proteins, of which 19 peptides have been shown to elicit T cell responses in previous studies. Our data thus shows the prevalence of clinically relevant tumour-associated antigenic peptides in the HLA-I ligandome presented on EV.Publisher PDFPeer reviewe

    Rapid evolution and gene expression : a rapidly-evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression

    Get PDF
    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalised on a rapidly-evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically-orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation.PostprintPeer reviewe

    Quantitative proteomic changes in LPS-activated monocyte-derived dendritic cells : a SWATH-MS study

    Get PDF
    We would like to thank Fiona Cooke for her help with collection of blood samples. We wish to thank the Wellcome Trust for funding the purchase of the TripleTOF 5600+ mass spectrometer (grant number 094476/Z/10/Z) and their Institutional Strategic Support Fund (grant number 097831/Z/11/Z) for funding a PhD studentship (to D.W.-M.). This work was also supported by Arthritis Research UK (grant number 21261).Dendritic cells are key immune cells that respond to pathogens and co-ordinate many innate and adaptive immune responses. Quantitative mass spectrometry using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) was performed here to determine the global alterations in monocyte-derived dendritic cells (moDCs) in response to stimulation with lipopolysaccharide (LPS). A moDC library of 4,666 proteins was generated and proteins were quantified at 0, 6 and 24 h post-LPS stimulation using SWATH-MS. At 6 h and 24 h post-LPS exposure, the relative abundance of 227 and 282 proteins was statistically significantly altered (p-value≤0.05), respectively. Functional annotation of proteins exhibiting significant changes in expression between the various time points led to the identification of clusters of proteins implicated in distinct cellular processes including interferon and interleukin signalling, endocytosis, the ER-phagosome pathway and antigen-presentation. Major histocompatibility complex (MHC) class I proteins were highly upregulated at 24 h, in SWATH-MS, whilst MHC class II proteins exhibited comparatively less change over this period. This study provides new detailed insight into the global proteomic changes that occur in moDCs during antigen processing and presentation and further demonstrates the potential of SWATH-MS for the quantitative study of proteins involved in cellular processes.Publisher PDFPeer reviewe

    Synthesis of Next Generation Maleimide Radical Labels

    Get PDF
    This work was funded by EPSRC, Grant Number EP/LO22044/1, a Royal Society University Research Fellowship to JEL , Royal Society Research Grant RG120645 and support from Active Spectrum Inc.The synthesis and characterization of four new nitroxide-radical-containing next-generation maleimides are presented. Each new label has a single leaving group which is either a phenoxyl or bromide. The linker between the maleimide and the nitroxide-containing framework is either a racemic mixture of a short chain or an achiral longer chain. These molecules have been designed to site-specifically label vicinal cysteines in proteins for magnetic resonance studies. The characterization of the final products includes crystallography and the labeling of sperm whale myoglobin protein.PostprintPeer reviewe

    Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK

    Get PDF
    This work was supported by a Wellcome Trust Seed Award in Science [208980/Z/17/Z] to RGdS; a University of St Andrews/Scottish Funding Council St Andrews Restarting Research Fund to RGdS; and a Wellcome Trust Institutional Strategic Support Fund [204821/Z/16/Z] to the University of St Andrews. ES is the recipient of a Cunningham Trust PhD studentship (PhD-CT-18-41).The enzyme m1A22-tRNA methyltransferase (TrmK) catalyzes the transfer of a methyl group to the N1 of adenine 22 in bacterial tRNAs. TrmK is essential for Staphylococcus aureus survival during infection but has no homolog in mammals, making it a promising target for antibiotic development. Here, we characterize the structure and function of S. aureus TrmK (SaTrmK) using X-ray crystallography, binding assays, and molecular dynamics simulations. We report crystal structures for the SaTrmK apoenzyme as well as in complexes with methyl donor SAM and co-product product SAH. Isothermal titration calorimetry showed that SAM binds to the enzyme with favorable but modest enthalpic and entropic contributions, whereas SAH binding leads to an entropic penalty compensated for by a large favorable enthalpic contribution. Molecular dynamics simulations point to specific motions of the C-terminal domain being altered by SAM binding, which might have implications for tRNA recruitment. In addition, activity assays for SaTrmK-catalyzed methylation of A22 mutants of tRNALeu demonstrate that the adenine at position 22 is absolutely essential. In silico screening of compounds suggested the multifunctional organic toxin plumbagin as a potential inhibitor of TrmK, which was confirmed by activity measurements. Furthermore, LC-MS data indicated the protein was covalently modified by one equivalent of the inhibitor, and proteolytic digestion coupled with LC-MS identified Cys92 in the vicinity of the SAM-binding site as the sole residue modified. These results identify a cryptic binding pocket of SaTrmK, laying a foundation for future structure-based drug discovery.Publisher PDFPeer reviewe

    Life-long epigenetic programming of cortical architecture by maternal ‘Western’ diet during pregnancy

    Get PDF
    Funding: European Research Council (SECRET-CELLS, ERC-2015-AdG-695136; T.H.); Wellcome Trust grant number 094476/Z/10/Z, which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St. Andrews.The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with ‘Western’ diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched ‘Western’ diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring’s brain function for life.PostprintPeer reviewe
    corecore