203 research outputs found
XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)
Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge
x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES
spectrum suggests that Ce is mainly trivalent, but the 4f state strongly
hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by
strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr
exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We
find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does
not originate from Pr valence fluctuation.Comment: 4 page
Possible Kondo resonance in PrFe4P12 studied by bulk-sensitive photoemission
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru;
X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f
resonance photoemission. A very strong spectral intensity is observed just
below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its
intensity at lower temperatures is observed. We speculate that this is the
Kondo resonance of Pr, the origin of which is attributed to the strong
hybridization between the Pr 4f and the conduction electrons.Comment: 4 pages(camera ready format), 4 figures, ReVTeX
Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12
X-ray and electron diffraction measurements on the metal-insulator (M-I)
transition compound PrRuP have revealed the emergence of a periodic
ordering of charge density around the Pr atoms. It is found that the ordering
is associated with the onset of a low temperature insulator phase. These
conclusions are supported by the facts that the space group of the crystal
structure transforms from Im to Pm below the M-I transition
temperature and also that the temperature dependence of the superlattice peaks
in the insulator phase follows the squared BCS function. The M-I transition
could be originated from the perfect nesting of the Fermi surface and/or the
instability of the electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press
Magnetic properties of the filled skutterudite-type structure compounds GdRu4P12 and TbRu4P12 synthesized under high pressure
We have succeeded in synthesizing filled skutterudite-type structure compounds GdRu4P12 and TbRu4P12 under high pressure. The magnetic properties of GdRu4P12 and TbRu4P12 have been studied by means of electrical resistivity, magnetic susceptibility, and magnetization measurements. Magnetic experiments suggest that the Gd and Tb ions in the compounds have trivalent state. The compound GdRu4P12 displays features that suggest the occurrence of antiferromagnetic ordering below TN=22 K. In TbRu4P12, thermal variation of magnetic susceptibility indicates the existence of two successive magnetic transitions (TN=20 K and T1=10 K). Magnetization up to 18 T exhibits two-step metamagnetic transitions below T1 for TbRu4P12
Metal-insulator transition in PrRuP and SmRuP investigated by optical spectroscopy
Electronic structures of the filled-skutterudite compounds PrRuP
and SmRuP, which undergo a metal-insulator transition (MIT) at
= 60 K and 16 K, respectively, have been studied by means of
optical spectroscopy. Their optical conductivity spectra develop an energy gap
of 10 meV below . The observed characteristics of the energy
gap are qualitatively different from those of the Kondo semiconductors. In
addition, optical phonon peaks in the spectra show anomalies upon the MIT,
including broadening and shifts at and an appearance of new peaks
below . These results are discussed in terms of density waves or
orbital ordering previously predicted for these compounds.Comment: 4pages, 4figures, submitted to Physical Review
Structural Phase Transition Accompanied by Metal - Insulator Transition in PrRu4P12
A structural phase transition has been found using electron diffraction
technique in PrRu4P12 accompanied by a metal - insulator (M - I) transition
(TMI = 60K). Weak superlattice spots appeared at (H, K, L) (H + K + L = 2n + 1;
n is an integer) position at a temperature of T = 12 K and 40 K. Above T = 70
K, the spots completely vanished. The space group of the low temperature phase
is probably Pm3. This is the first observation of a symmetry other than Im3 in
skutterudite compounds.Comment: 7 pages, 2 figures; J. Phys.: Condens. Matter (in press
Optical Properties of MFe_4P_12 filled skutterudites
Infrared reflectance spectroscopy measurements were made on four members of
the MFe_4P_12 family of filled skutterudites, with M=La, Th, Ce and U. In
progressing from M=La to U the system undergoes a metal-insulator transition.
It is shown that, although the filling atom induces such dramatic changes in
the transport properties of the system, it has only a small effect on lattice
dynamics. We discuss this property of the compounds in the context of their
possible thermoelectric applications.Comment: Manuscript in ReVTeX format, 7 figures in PostScirpt forma
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
- …