19 research outputs found

    Dynamic Leidenfrost effect: relevant time and length scales

    Get PDF
    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate

    Boiling regimes of impacting drops on a heated substrate under reduced pressure

    Get PDF
    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P = 0.13 bar to atmospheric pressure. We employ Frustrated Total Internal Reflection (FTIR) imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling) or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependency on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism, and are dominated by the dynamics taken place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e. the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P = 0.13 and P = 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.Comment: 13 pages, 6 figures, submitted to PR

    Motion and coalescence of a pair of bubbles rising side by side

    Get PDF
    Bouncing and coalescence of a pair of slightly deformed bubbles rising side by side in a quiescent liquid are experimentally studied. The trajectories and shapes of the bubbles are investigated in detail by using a high-speed video camera. The wakes of bubbles are visualized by using a photochromic dye that is colored with UV light irradiation. We observe that the patterns of the trajectories of rising bubbles are strongly dependent on the Reynolds number. When the Reynolds number is over the critical region, two bubbles approach each other and then collide. After the collision, two types of motions are observed-coalescence and bouncing. We investigate the critical Reynolds number and Weber number over which the bubbles bounce. In the definitions of these numbers, we use vertical velocity, instead of horizontal one, as the characteristic velocity. We clarify that the critical Weber number is around 2 regardless of the Morton number. The critical Reynolds number decreases with an increase in the Morton number. Moreover, the visualization of the wake of bubbles enables us to observe the vortex separation from the rear surface of the bubbles on collision. We find that the vortex separation from the rear of bouncing bubbles causes a decrease in the rising velocity and an increase in the horizontal speed after their collision. We also observe that the behavior of repeatedly bouncing bubbles is significantly influenced by the wake instability of a single bubble rather than by the bubble-bubble interaction. By applying an existing model for spherical bubble-bubble interaction, we clarify that the revised model accurately describes the trajectory of a pair of slightly deformed bubbles using the restitution coefficient and velocity fluctuation from the experimental results

    Rim Breakups of Impacting Drops on a Superhydrophobic Surface and a Superheated Surface

    No full text
    The rim breakup of an impacting drop is experimentally investigated by comparing the impacts on superheated and superhydrophobic surfaces. The objective of the present study is to experimentally examine whether the Bo = 1 criteria holds for the rim breakups of drops impacting on the surfaces. A transparent sapphire plate was heated to achieve the Leidenfrost impact, which enables us to observe with a high-speed camera from below. The characteristics of the rim breakup were evaluated quantitatively using a particle tracking velocimetry method for both the rim and the drops generated. As a result, we clarified that Bo of the rim increases in the spreading phase and marks the highest value of 0.5 on a superheated surface, which is smaller than that on a pillar, where Bo ≈ 1. On a superhydrophobic surface, the highest Bo was 1.2, which is smaller than that on a wettable solid surface, 2.5, but close to the value on a pillar. We also revealed that diameters of generated drops collapse on a master curve when plotted as a function of pinch-off time for both the impacts on superheated and superhydrophobic surfaces

    Formation of Single Bubbles from a Submerged Orifice Using Pulsed Ultrasound Waves

    No full text

    Rim Breakups of Impacting Drops on a Superhydrophobic Surface and a Superheated Surface

    No full text
    The rim breakup of an impacting drop is experimentally investigated by comparing the impacts on superheated and superhydrophobic surfaces. The objective of the present study is to experimentally examine whether the Bo = 1 criteria holds for the rim breakups of drops impacting on the surfaces. A transparent sapphire plate was heated to achieve the Leidenfrost impact, which enables us to observe with a high-speed camera from below. The characteristics of the rim breakup were evaluated quantitatively using a particle tracking velocimetry method for both the rim and the drops generated. As a result, we clarified that Bo of the rim increases in the spreading phase and marks the highest value of 0.5 on a superheated surface, which is smaller than that on a pillar, where Bo ≈ 1. On a superhydrophobic surface, the highest Bo was 1.2, which is smaller than that on a wettable solid surface, 2.5, but close to the value on a pillar. We also revealed that diameters of generated drops collapse on a master curve when plotted as a function of pinch-off time for both the impacts on superheated and superhydrophobic surfaces

    Behavior of Single Rising Bubbles in Superpurified Water

    No full text

    Measuring thin films using quantitative frustrated total internal reflection (FTIR)

    No full text
    In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory. Graphical abstract: [Figure not available: see fulltext.]

    Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature

    Get PDF
    AbstractA drop impacting a smooth solid surface heated above the saturation temperature can either touch it (contact boiling) or not (film boiling), depending on the surface temperature. The heat transfer is greatly reduced in the latter case by the insulating vapour layer under the drop. In contrast to previous studies, here we use a relatively poor thermally conducting glass surface. Using a total internal reflection method, we visualise the wetting dynamics of the drop on the surface. We discover a new touch-down process, in which liquid–solid contact occurs a few hundred microseconds after the initial impact. This phenomenon is due to the cooling of the solid surface by the generation of vapour. We propose a model to account for this cooling effect, and validate it experimentally with our observations. The model leads to the determination of a thermal time scale (about 0.3ms for glass) for the cooling of the solid. We conclude that when the impact time scale of the drop on the substrate (drop diameter/impact velocity) is of the order of the thermal time scale or larger, the cooling effect cannot be neglected and the drop will make contact in this manner. If the impact time scale however is much smaller than the thermal time scale, the surface remains essentially isothermal and the impact dynamics is not affected
    corecore