34 research outputs found

    Tissue-Specific Function of Period3 in Circadian Rhythmicity

    Get PDF
    The mammalian circadian system is composed of multiple central and peripheral clocks that are temporally coordinated to synchronize physiology and behavior with environmental cycles. Mammals have three homologs of the circadian Period gene (Per1, 2, 3). While numerous studies have demonstrated that Per1 and Per2 are necessary for molecular timekeeping and light responsiveness in the master circadian clock in the suprachiasmatic nuclei (SCN), the function of Per3 has been elusive. In the current study, we investigated the role of Per3 in circadian timekeeping in central and peripheral oscillators by analyzing PER2::LUCIFERASE expression in tissues explanted from C57BL/6J wild-type and Per3−/− mice. We observed shortening of the periods in some tissues from Per3−/− mice compared to wild-types. Importantly, the periods were not altered in other tissues, including the SCN, in Per3−/− mice. We also found that Per3-dependent shortening of endogenous periods resulted in advanced phases of those tissues, demonstrating that the in vitro phenotype is also present in vivo. Our data demonstrate that Per3 is important for endogenous timekeeping in specific tissues and those tissue-specific changes in endogenous periods result in internal misalignment of circadian clocks in Per3−/− mice. Taken together, our studies demonstrate that Per3 is a key player in the mammalian circadian system

    Identification of sleep-promoting neurons in vitro

    No full text
    The neurons responsible for the onset of sleep are thought to be located in the preoptic area and more specifically, in the ventrolateral preoptic nucleus (VLPO). Here we identify sleep-promoting neurons in vitro and show that they represent an homogeneous population of cells that must be inhibited by systems of arousal during the waking state. We find that two-thirds of the VLPO neurons are multipolar triangular cells that show a low-threshold spike. This proportion matches that of cells active during sleep in the same region. We then show, using single-cell reverse transcriptase followed by polymerase chain reaction, that these neurons probably contain gamma-aminobutyric acid (GABA). We also show that these neurons are inhibited by noradrenaline and acetylcholine, both of which are transmitters of wakefulness. As most of these cells are also inhibited by serotonin but unaffected by histamine, their overall inhibition by transmitters of wakefulness is in agreement with their relative inactivity during waking with respect to sleep. We propose that the reciprocal inhibitory interaction of such VLPO neurons with the noradrenergic, serotoninergic and cholinergic waking systems to which they project is a key factor for promoting sleep

    Effect of Neurexan on the pattern of EEG frequencies in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various medications of natural origin have effectively treated stress-related disorders, such as sleep disturbances and agitated conditions. The efficacy of Neurexan, a multicomponent, low-dose medication, has been demonstrated in observational studies, but its exact mechanism of action has not been determined.</p> <p>Methods</p> <p>To characterize the effects of Neurexan on the central nervous system, we analyzed the spectral frequencies of field potentials in four rat brain areas after a single oral administration of Neurexan. Different doses of Neurexan were tested within a crossover design, and effects were compared with vehicle control.</p> <p>Results</p> <p>Significant effects were observed with 0.5 tablets of Neurexan, predominantly on δ- and θ-waves in the frontal cortex and reticular formation (<it>P</it> < 0.01). In the reticular formation, significant changes of δ- and θ-waves occurred as early as during the first hour after administration. The time course revealed a significant and longer-lasting increase of δ- and θ-waves in the frontal cortex and reticular formation, whereas other spectral frequencies were only transiently affected in the frontal cortex, reticular formation, and striatum.</p> <p>Conclusion</p> <p>In conclusion, this study demonstrated that the low-dose medication Neurexan influences central nervous system activity in rats. The resulting electroencephalographic profile of Neurexan shows several similarities with those of other calming agents, such as Valeriana and Passiflora, suggesting a potential benefit of Neurexan for patients with stress-related disorders. Moreover, this report demonstrates that electroencephalographic signatures are also valid biomarkers for the assessment of low-dose medications, such as Neurexan.</p
    corecore