476 research outputs found

    Deuteron-equivalent and phase-equivalent interactions within light nuclei

    Full text link
    Background: Phase-equivalent transformations (PETs) are well-known in quantum scattering and inverse scattering theory. PETs do not affect scattering phase shifts and bound state energies of two-body system but are conventionally supposed to modify two-body bound state observables such as the rms radius and electromagnetic moments. Purpose: In order to preserve all bound state observables, we propose a new particular case of PETs, a deuteron-equivalent transformation (DET-PET), which leaves unchanged not only scattering phase shifts and bound state (deuteron) binding energy but also the bound state wave function. Methods: The construction of DET-PET is discussed; equations defining the simplest DET-PETs are derived. We apply these simplest DET-PETs to the JISP16 NNNN interaction and use the transformed NNNN interactions in calculations of 3^3H and 4^4He binding energies in the No-core Full Configuration (NCFC) approach based on extrapolations of the No-core Shell Model (NCSM) basis space results to the infinite basis space. Results: We demonstrate the DET-PET modification of the npnp scattering wave functions and study the DET-PET manifestation in the binding energies of 3^3H and 4^4He nuclei and their correlation (Tjon line). Conclusions: It is shown that some DET-PETs generate modifications of the central component while the others modify the tensor component of the NNNN interaction. DET-PETs are able to modify significantly the npnp scattering wave functions and hence the off-shell properties of the NNNN interaction. DET-PETs give rise to significant changes in the binding energies of 3^3H (in the range of approximately 1.5 MeV) and 4^4He (in the range of more than 9 MeV) and are able to modify the correlation patterns of binding energies of these nuclei

    Moving system with speeded-up evolution

    Full text link
    In the classical (non-quantum) relativity theory the course of the moving clock is dilated as compared to the course of the clock at rest (the Einstein dilation). Any unstable system may be regarded as a clock. The time evolution (e.g., the decay) of a uniformly moving physical system is considered using the relativistic quantum theory. The example of a moving system is given whose evolution turns out to be speeded-up instead of being dilated. A discussion of this paradoxical result is presented.Comment: 10 pages, LaTe

    The JJ-matrix inverse scattering approach for coupled channels with different thresholds

    Full text link
    The inverse scattering method within the JJ-matrix approach to the two coupled-channel problem is discussed. We propose a generalization of the procedure to the case with different thresholds.Comment: 20 pages, 3 figure

    Phenomenological theory of phase transitions in epitaxial BaxSr(1-x)TiO3 thin films

    Full text link
    A phenomenological thermodynamic theory of BaxSr(1-x)TiO3 (BST-x) thin films epitaxially grown on cubic substrates is developed using the Landau-Devonshire approach. The eighth-order thermodynamic potential for BT single crystal and modified fourth-order potential for ST single crystal were used as starting potentials for the end-members of the solid solution with the aim to develop potential of BST-xx solid solution valid at high temperatures. Several coefficients of these potentials for BT were changed to obtain reasonable agreement between theory and experimental phase diagram for BST-x (x > 0.2) solid solutions. For low Ba content we constructed the specific phase diagram where five phases converge at the multiphase point (T_N2 = 47 K, x = 0.028) and all transitions are of the second order. The "concentration-misfit strain" phase diagrams for BST-x thin films at room temperature and "temperature-misfit strain" phase diagrams for particular concentrations are constructed and discussed. Near T_N2 coupling between polarization and structural order parameter in the epitaxial film is modified considerably and large number of new phases not present in the bulk materials appear on the phase diagram.Comment: 8 pages 5 figure

    Reversibility conditions for quantum channels and their applications

    Full text link
    A necessary condition for reversibility (sufficiency) of a quantum channel with respect to complete families of states with bounded rank is obtained. A full description (up to isometrical equivalence) of all quantum channels reversible with respect to orthogonal and nonorthogonal complete families of pure states is given. Some applications in quantum information theory are considered. The main results can be formulated in terms of the operator algebras theory (as conditions for reversibility of channels between algebras of all bounded operators).Comment: 28 pages, this version contains strengthened results of the previous one and of arXiv:1106.3297; to appear in Sbornik: Mathematics, 204:7 (2013

    NN Interaction JISP16: Current Status and Prospect

    Full text link
    We discuss realistic nonlocal NN interactions of a new type - J-matrix Inverse Scattering Potential (JISP). In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties) but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM) approach and respective progress in developing ab exitu JISP-type NN-interactions together with plans of their forthcoming improvements.Comment: 9 pages, 3 figures, to be published in Proceedings of Few-body 19 conferenc

    Generalized compactness in linear spaces and its applications

    Full text link
    The class of subsets of locally convex spaces called μ\mu-compact sets is considered. This class contains all compact sets as well as several noncompact sets widely used in applications. It is shown that many results well known for compact sets can be generalized to μ\mu-compact sets. Several examples are considered. The main result of the paper is a generalization to μ\mu-compact convex sets of the Vesterstrom-O'Brien theorem showing equivalence of the particular properties of a compact convex set (s.t. openness of the mixture map, openness of the barycenter map and of its restriction to maximal measures, continuity of a convex hull of any continuous function, continuity of a convex hull of any concave continuous function). It is shown that the Vesterstrom-O'Brien theorem does not hold for pointwise μ\mu-compact convex sets defined by the slight relaxing of the μ\mu-compactness condition. Applications of the obtained results to quantum information theory are considered.Comment: 27 pages, the minor corrections have been mad
    corecore