2,836 research outputs found

    Novel Cell type-specific aptamer-siRNA delivery system for HIV-1 therapy

    Get PDF
    The successful use of small interfering RNAs (siRNAs) for therapeutic purposes requires safe and efficient delivery to specific cells and tissues. Here we demonstrate cell type-specific delivery of anti-HIV siRNAs via fusion to an anti-gp120 aptamer. The envelope glycoprotein is expressed on the surface of HIV-1 infected cells, allowing binding and interalization of the aptamer-siRNA chimeric molecules. We demonstrate that the anti-gp120 aptamer-siRNA chimera is specifically taken up by cells expressing HIV-1 gp120, and the appended siRNA is processed by Dicer, releasing an anti-tat/rev siRNA which in turn inhibits HIV replication. We show for the first time a dual functioning aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities and that gp120 expressed on the surface of HIV infected cells can be used for aptamer mediated delivery of anti-HIV siRNAs

    Cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    Get PDF
    Mathematical and Physical Sciences: 2nd Place (The Ohio State University Edward F. Hayes Graduate Research Forum)When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or diffuse supernova neutrino background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6–18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code fluka and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiokande measurements of the total background to within a factor of 2, which is good given that the isotope yields vary by orders of magnitude and that some details of the experiment are unknown to us at this level. Our results break aggregate data into component isotopes, reveal their separate production mechanisms, and preserve correlations between them. We outline how to implement more effective background rejection techniques using this information. Reducing backgrounds in solar and DSNB studies by even a factor of a few could help lead to important new discoveries.No embarg

    Echo Technique to Distinguish Flavors of Astrophysical Neutrinos

    Get PDF
    Mathematical and Physical Sciences: 1st Place (The Ohio State University Edward F. Hayes Graduate Research Forum)The flavor composition of high-energy astrophysical neutrinos is a rich observable. However, present analyses cannot effectively distinguish particle showers induced by νe versus ντ . We show that this can be accomplished by measuring the intensities of the delayed, collective light emission from muon decays and neutron captures, which are, on average, greater for ντ than for νe. This new technique would significantly improve tests of the nature of astrophysical sources and of neutrino properties. We discuss the promising prospects for implementing it in IceCube and other detectors.No embarg

    MUSTANG 3.3 Millimeter Continuum Observations of Class 0 Protostars

    Full text link
    We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indices (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic dust temperature within the central beam of our observations. We present constraints on the millimeter dust opacity index, beta, between 0.862 mm, 1.25 mm, and 3.3 mm. Beta_mm typically ranges from 1.0 to 2.4 for Class 0 sources. The relative contributions from disk emission and envelope emission are estimated at 3.3 mm. L483 is found to have negligible disk emission at 3.3 mm while L1527 is dominated by disk emission within the central beam. The beta_mm^disk <= 0.8 - 1.4 for L1527 indicates that grain growth is likely occurring in the disk. The photometry presented in this paper may be combined with future interferometric observations of Class 0 envelopes and disks.Comment: 19 pages, 3 figures, AJ accepted, in pres
    corecore