43 research outputs found

    Respiratory Syncytial Virus Interferon Antagonist NS1 Protein Suppresses and Skews the Human T Lymphocyte Response

    Get PDF
    We recently demonstrated that the respiratory syncytial virus (RSV) NS1 protein, an antagonist of host type I interferon (IFN-I) production and signaling, has a suppressive effect on the maturation of human dendritic cells (DC) that was only partly dependent on released IFN-I. Here we investigated whether NS1 affects the ability of DC to activate CD8+ and CD4+ T cells. Human DC were infected with RSV deletion mutants lacking the NS1 and/or NS2 genes and assayed for the ability to activate autologous T cells in vitro, which were analyzed by multi-color flow cytometry. Deletion of the NS1, but not NS2, protein resulted in three major effects: (i) an increased activation and proliferation of CD8+ T cells that express CD103, a tissue homing integrin that directs CD8+ T cells to mucosal epithelial cells of the respiratory tract and triggers cytolytic activity; (ii) an increased activation and proliferation of Th17 cells, which have recently been shown to have anti-viral effects and also indirectly attract neutrophils; and (iii) decreased activation of IL-4-producing CD4+ T cells - which are associated with enhanced RSV disease - and reduced proliferation of total CD4+ T cells. Except for total CD4+ T cell proliferation, none of the T cell effects appeared to be due to increased IFN-I signaling. In the infected DC, deletion of the NS1 and NS2 genes strongly up-regulated the expression of cytokines and other molecules involved in DC maturation. This was partly IFN-I-independent, and thus might account for the T cell effects. Taken together, these data demonstrate that the NS1 protein suppresses proliferation and activation of two of the protective cell populations (CD103+ CD8+ T cells and Th17 cells), and promotes proliferation and activation of Th2 cells that can enhance RSV disease

    Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells

    Get PDF
    High throughput detection of differential expression of genes is an efficient means of identifying genes and pathways that may play a role in biological systems under certain experimental conditions. There exist a variety of approaches that could be used to identify groups of genes that change in expression in response to a particular stimulus or environment. We here describe the application of suppression subtractive hybridization (SSH) coupled with cDNA microarray analysis for isolation and identification of chicken transcripts that change in expression on infection of host cells with a paramyxovirus. SSH was used for initial isolation of differentially expressed transcripts, a large-scale validation of which was accomplished by microarray analysis. The data reveals a large group of regulated genes constituting many biochemical pathways that could serve as targets for future investigations to explore their role in paramyxovirus pathogenesis. The detailed methods described herein could be useful and adaptable to any biological system for studying changes in gene expression

    Effects of Human Respiratory Syncytial Virus, Metapneumovirus, Parainfluenza Virus 3 and Influenza Virus on CD4+ T Cell Activation by Dendritic Cells

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-γ and tumor necrosis factor-α by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. CONCLUSIONS, SIGNIFICANCE: Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Regulation of Host Cell Transcriptional Physiology by the Avian Pneumovirus Provides Key Insights into Host-Pathogen Interactions

    No full text
    Infection with a viral pathogen triggers several pathways in the host cell that are crucial to eliminating infection, as well as those that are used by the virus to enhance its replication and virulence. We have here used suppression subtractive hybridization and cDNA microarray analyses to characterize the host transcriptional response in an avian pneumovirus model of infection. The results of our investigations reveal a dynamic host response that includes the regulation of genes with roles in a vast array of cellular functions as well as those that have not been described previously. The results show a considerable upregulation in transcripts representing the interferon-activated family of genes, predicted to play a role in virus replication arrest. The analysis also identified transcripts for proinflammatory leukocyte chemoattractants, adhesion molecules, and complement that were upregulated and may account for the inflammatory pathology that is the hallmark of viral respiratory infection. Interestingly, alterations in the transcription of several genes in the ubiquitin and endosomal protein trafficking pathways were observed, suggesting a role for these pathways in virus maturation and budding. Taken together, the results of our investigations provide key insights into individual genes and pathways that constitute the host cell's response to avian pneumovirus infection, and they have enabled the development of resources and a model of host-pathogen interaction for an important avian respiratory tract pathogen

    Sequence Analysis of the Matrix (M2) Protein Gene of Avian Pneumovirus Recovered from Turkey Flocks in the United States

    No full text
    We here report the comparative sequence and phylogenetic analysis of the avian pneumovirus subgroup C (APV C) matrix (M2) gene of cell culture-adapted isolates and clinical samples. Limited heterogeneity was observed among the M2 sequences, suggesting that diagnostic tests and vaccines against APV C are likely to exhibit broad cross-reactivity

    Identification and Analysis of Safener-Inducible Expressed Sequence Tags in Populus Using a cDNA Microarray

    No full text
    Safeners are the chemicals used to protect plants from detrimental effects of herbicides, but their mode of action at the molecular level is not well understood. As an initial step towards understanding the molecular mechanism of safener action in trees, homologous genes in hybrid poplar (Populus nigra x Populus maximowiczii) that were induced by a safener were identified. We here describe the identification of differentially expressed genes in Populus that are induced by Concep-III, a herbicide safener. Expressed sequence tags (ESTs) enriched for transcriptionally induced genes were isolated by suppressive subtractive hybridization (SSH). The SSH library cDNA inserts were used to construct a cDNA microarray for high-throughput validation of the up-regulated expression of safener-induced genes. Single-pass and partial sequences of 1,344 safener-induced ESTs were assembled into 418 single-tons and 328 clusters, but the putative functions of almost 53% of the ESTs are not known. Genes encoding proteins involved in all three different phases of safener action, viz., oxidation, conjugation, and sequestration, were found in the SSH library. Almost 75% of genes that showed greater than 2-fold expression upon safener treatment were redundant in the SSH library. The expression pattern for selected genes was validated by reverse transcription-polymerase chain reaction. A few safener-induced genes that were not previously reported to be induced by safeners, but which may have a role in herbicide metabolism, were identified. The newly identified genes could have potential for application in genetic engineering of plants for herbicide detoxification and tolerance
    corecore