56 research outputs found

    Discrepancy of target sites between clinician and cytopathological reports in head neck fine needle aspiration: Did I miss the target or did the clinician mistake the organ site?

    Get PDF
    The diagnostic accuracy of fine needle aspiration cytology (FNAC) of head and neck lesions is relatively high, but cytologic interpretation might be confusing if the sample is lacking typical cytologic features according to labeled site by physician. These errors may have an impact on pathology search engines, healthcare costs or even adverse outcomes. The cytology archive database of multiple institutions in southern Iran and Australia covering the period 2001–2011, were searched using keywords: salivary gland, head, neck, FNAC, and cytology. All the extracted reports were reviewed. The reports which showed discordance between the clinician’s impression of the organ involved and subsequent fine needle biopsy request, and the eventual cytological diagnosis were selected. The cytological diagnosis was confirmed by histology or cell block, with assistance from imaging, clinical outcome, physical examination, molecular studies, or microbiological culture. The total number of 10,200 head and neck superficial FNAC were included in the study, from which 48 cases showed discordance between the clinicians request and the actual site of pathology. Apart from the histopathology, the imaging, clinical history, physical examination, immunohistochemical study, microbiologic culture and molecular testing helped to finalize the target organ of pathology in 23, 6, 7, 8, 2, and 1 cases respectively. The commonest discrepancies were for FNAC of “salivary gland” [total: 20 with actual final pathology in: bone (7), soft tissue (5), lymph node (3), odontogenic (3) and skin (2)], “lymph node” [total: 12 with final pathology in: soft tissue (3), skin (3), bone (1) and brain (1)], “soft tissue” [total: 11 with final pathology in: bone (5), skin (2), salivary gland (1), and ocular region (1)] and “skin” [total: 5 with final pathology in: lymph node (2), bone (1), soft tissue (1) and salivary gland (1)]. The primary physician requesting FNAC of head and neck lesions are incorrect in their clinical impression of the actual site in nearly 0.5 percent of cases, due to the overlapping clinical and imaging findings or possibly due to inadequate history taking or physical examination

    Human unrestricted somatic stem cells ameliorate sepsis-related acute lung injury in mice

    Get PDF
    Background Aims: Sepsis and related disorders, especially acute lung injury (ALI), are the most challenging life-threatening diseases in the hospital intensive care unit. Complex pathophysiology, unbalanced immune condition, and high rate of mortality complicate the treatment of sepsis. Recently, cell therapy has been introduced as a promising option to recover the sepsis symptoms. The aim of this study was to investigate the therapeutic potential of human unrestricted somatic stem cells (USSCs) isolated from human umbilical cord blood in the mouse model of ALI. USSCs significantly enhanced the survival rate of mice suffering from ALI and suppressed concentrations of proinflammatory mediators TNF-α, and interleukin (IL)-6, and the level of anti-inflammatory cytokine IL-10. ALI mice injected by USSCs showed notable reduction in lung and liver injury, pulmonary edema, and hepatic enzymes, compared with the control group. These results determined the in vivo immunomodulatory effect of USSCs for recovery of immune balance and reduction of tissue injury in the mouse model of ALI. Therefore, USSCs can be a suitable therapeutic approach to manage sepsis disease through the anti-inflammatory potentia

    Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies

    No full text
    Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part

    CD93 hematopoietic stem cells improve diabetic wound healing by VEGF activation and downregulation of DAPK-1

    Get PDF
    Diabetes is associated with numerous complications, such as diabetic skin wounds or ulcerations. The aim of this study was to evaluate experimentally the effectiveness of applying polycaprolactone (PCL)-gelatin scaffold, with or without rat CD93 hematopoietic stem cells (HSCs), in diabetic wound healing in a rat model. CD93 HSCs were aseptically isolated from rat bone marrow using fluorescent activated cell sorting (FACS) method and FACS-SORTER. A total of 25 Wistar rats were divided into five groups including Group I (sham, nondiabetic, and wound covered only with sterile dressing), II (control, diabetic rat), III (CD93 HSCs alone), IV (PCL-gelatin scaffold), and V (CD93 HSCs+PCL-gelatin scaffold). Animals were killed on Days 7, 14, or 28 posttreatment and histological sections were blindly evaluated by two expert pathologists. Death-associated protein kinase 1 (DAPK-1) gene and vesicular endothelial growth factors (VEGF) protein expression were evaluated using reverse transcription-polymerase chain reaction and western blot, respectively. The thickest and the thinnest epidermises microscopically were belonged to CD93+HSCs+scaffold and the control group, respectively. The growth rate of the epidermis and adnexal epithelia was the highest in both the cell and cell+scaffold groups. Evaluation of the protein expression level of VEGF indicated that the expression levels of this growth factor were the most on Day 7 posttreatment in sham, HSCs alone, and HSCs cell+scaffold groups. While the lowest expression levels of this growth factor was detected in the control and scaffold groups. The gene expression level of DAPK-1 on Day 7 posttreatment was higher than that of the Day 14 posttreatment in all groups. The highest and lowest gene expression levels of DAPK-1 belonged to control and sham groups, respectively. According to our findings, CD93 HSCs offer new prospects for the treatment of diabetic ulcers and concomitant application of these cells with PCL-gelatin nanofiber scaffold significantly improves diabetic wound treatment. © 2019 Wiley Periodicals, Inc

    Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications

    No full text
    Human endometrial stem cells (hEnSCs) are known as an attractive source of stem cells for regenerative medicine. hEnSCs are easily isolated and are capable of repairing uterine through their strong ability of creating new capillaries. In this study, a three-dimensional (3D) nanofibrous polycaprolactone (PCL)/collagen scaffold was fabricated and characterized in order to be applied as a new approach for skin reconstruction. Furthermore, the behavior of hEnSCs on this scaffold was investigated. First, a PCL 3D scaffold was constructed using electrospinning technique. Plasma treated and PCL was grafted by collagen. The constructs were characterized for mechanical and structural properties. Cell attachment, proliferation, viability, and differentiation of hEnSCs were assessed after being seeded on PCL and PCL/collagen scaffolds using scanning electron microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and real-time polymerase chain reaction tests. The results showed higher wettability for the PCL/collagen scaffold with desirable mechanical and structural characteristics compared to PCL and collagen alone. The attachment and proliferation rates of hEnSCs on the PCL/collagen scaffold were higher compared to those on the bare PCL. Hence, hEnSCs are newly discovered stem cell source for skin tissue engineering in vitro, particularly when developed on PCL/collagen nanofiber scaffolds. Therefore, application of hEnSCs for skin regeneration is a novel therapeutic approach for temporary skin substitute. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1578�1586, 2018. © 2017 Wiley Periodicals, Inc

    Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine

    No full text
    The use of DNA vaccines has become an attractive approach for generating antigen-specific cytotoxic CD8+ T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be improved by using an adjuvant injected together with checkpoint antibodies. In the current study, we evaluated whether the therapeutic effects of a DNA vaccine encoding human papilloma virus type 16 (HPV-16) E7 can be enhanced by combined application of an immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway and secondary lymphoid tissue chemokine (SLC) also known as CCL21 adjuvant, in a mouse cervical cancer model. The therapeutic effects of the DNA vaccine in combination with CCL21 adjuvant plus PD-1 blockade was evaluated using a tumor growth curve. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using non-radioactive cytotoxicity and MTT assays, respectively. Vascular endothelial growth factor (VEGF) and IL-10 expression in the tumor and the levels of IFN-γ and IL-4 in supernatants of spleno-lymphocyte cultures were measured using ELISA. The immune efficacy was evaluated by in vivo tumor regression assay. The results showed that vaccination with a DNA vaccine in combination with the CCL21 adjuvant plus PD-1 blockade greatly enhanced cytotoxic T lymphocyte production and lymphocyte proliferation rates and greatly inhibited tumor progression. Moreover, the vaccine in combination with adjuvant and blockade significantly reduced intratumoral VEGF, IL-10 and splenic IL-4 but induced the expression of splenic IFN-γ. This formulation could be an effective candidate for a vaccine against cervical cancers and merits further investigation. © 2016, Springer-Verlag Wien

    Erratum to: Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine (Archives of Virology, (2017), 162, 2, (333-346), 10.1007/s00705-016-3091-5)

    No full text
    Unfortunately, the fourth author name “Mahdieh Mondanizadeh” was incorrectly published in the original version. The author name is corrected here and in the original publication as well. © Springer-Verlag Wien 2016

    Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells

    No full text
    To be effective, therapeutic cancer vaccines should stimulate both an effective cell-mediated and a robust cytotoxic CD8+ T-cell response against human papillomavirus (HPV)-infected cells to treat the pre-existing tumors and prevent potential future tumors. In this study, the therapeutic experiments were designed in order to evaluate antitumor effect against the syngeneic TC-1 tumor model. The anti-tumor efficacy of a HPV-16 E7 DNA vaccine adjuvanted with melatonin (MLT) was evaluated in a C57BL/6 mouse tumor model by measuring tumor growth post vaccination and the survival rate of tumor-bearing mice, analyzing the specific lymphocyte proliferation responses in control and vaccinated mice by MTT assay. The E7-specific cytotoxic T cells (CTL) were analyzed by lymphocyte proliferation and lactate dehydrogenates (LDH) release assays. IFN-γ, IL-4 and TNF-α secretion in splenocyte cultures as well as vascular endothelial growth factor (VEGF) and IL-10 in the tumor microenvironment were assayed by ELISA. Our results demonstrated that subcutaneous administration of C57BL/6 mice with a DNA vaccine adjuvanted with MLT dose-dependently and significantly induced strong HPV16 E7-specific CD8+ cytotoxicity and IFN-γ and TNF-α responses capable of reducing HPV-16 E7-expressing tumor volume. A significantly higher level of E7-specific T-cell proliferation was also found in the adjuvanted vaccine group. Furthermore, tumor growth was significantly inhibited when the DNA vaccine was combined with MLT and the survival time of TC-1 tumor bearing mice was also significantly prolonged. In vivo studies further demonstrated that MLT decreased the accumulation of IL-10 and VEGF in the tumor microenvironment of vaccinated mice. These data indicate that melatonin as an adjuvant augmented the cancer vaccine efficiency against HPV-associated tumors in a dose dependent manner. © 2017, Springer-Verlag GmbH Austria, part of Springer Nature

    Molecular Characterization and Phylogenetic Analysis of Anaplasma spp. and Ehrlichia spp. Isolated from Various Ticks in Southeastern and Northwestern Regions of Iran

    No full text
    Introduction: Anaplasma/Ehrlichia species are tick-transmitted pathogens that cause infections in humans and numerous domestic and wild animal species. There is no information available on the molecular characteristics and phylogenetic position of Anaplasma/Ehrlichia spp. isolated from tick species from different geographic locations in Iran. The aim of this study was to determine the prevalence, molecular characteristics, and phylogenetic relationship of both Anaplasma spp. and Ehrlichia spp. in tick species isolated from different domestic animals from two different geographical locations of Iran. Methods: A total of 930 ticks were collected from 93 cattle, 250 sheep, and 587 goats inhabiting the study areas. The collected ticks were then investigated for the presence of Anaplasma/Ehrlichia spp. using nested PCR based on the 16S rRNA gene, followed by sequencing. Sequence analysis was done based on the data published in the GenBank on Anaplasma/Ehrlichia spp. isolates using bioinformatic tools such as the standard nucleotide BLAST. Results: Genome of Anaplasma or Ehrlichia spp. was detected in 14 ticks collected in Heris, including 5 Dermacentor marginatus, 1 Haemaphysalis erinacei, 3 Hyalomma anatolicum, and 4 Rhipicephalus sanguineus, also in 29 ticks collected in Chabahar, including 14 R. sanguineus, 8 D. marginatus, 3 Hyalomma Anatolicum, and 4 Hyalomma dromedarii. Partial analysis of the 16S rRNA gene sequence of positive samples collected from goats and sheep showed that they were infected with Anaplasma/Ehrlichia spp. that were 94-98 identical to ovine Anaplasma and 91-96 identical to Neoehrlichia and Ehrlichia spp. Conclusion: The various ticks identified in this study suggest the possible emergence of tick-borne diseases in animals and humans in these regions. R. sanguineus and D. marginatus seem to be predominant vectors responsible for anaplasmosis in these regions. Partial sequence analysis of the 16S rRNA gene showed that A. ovis is genetically polymorphic in these regions. Furthermore, an association between the genetic heterogeneity of this microorganism and the geographical regions of Anaplasma strains was found. This study also showed that those ticks that were collected from the same geographical origin were infected with closely related strains of Anaplasma. © 2018, Mary Ann Liebert, Inc
    corecore