970 research outputs found

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log1ϵn)O(2^{\log^{1-\epsilon}n}) for any ϵ>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    Gunn Effect in Silicon Nanowires: Charge Transport under High Electric Field

    Get PDF
    Gunn (or Gunn-Hilsum) Effect and its associated negative differential resistivity (NDR) emanates from transfer of electrons between two different energy bands in a semiconductor. If applying a voltage (electric field) transfers electrons from an energy sub band of a low effective mass to a second one with higher effective mass, then the current drops. This manifests itself as a negative slope or NDR in the I-V characteristics of the device which is in essence due to the reduction of electron mobility. Recalling that mobility is inversely proportional to electron effective mass or curvature of the energy sub band. This effect was observed in semiconductors like GaAs which has direct bandgap of very low effective mass and its second indirect sub band is about 300 meV above the former. More importantly a self-repeating oscillation of spatially accumulated charge carriers along the transport direction occurs which is the artifact of NDR, a process which is called Gunn oscillation and was observed by J. B. Gunn. In sharp contrast to GaAs, bulk silicon has a very high energy spacing (~1 eV) which renders the initiation of transfer-induced NDR unobservable. Using Density Functional Theory (DFT), semi-empirical 10 orbital (sp3d5ssp^{3}d^{5}s^{*}) Tight Binding (TB) method and Ensemble Monte Carlo (EMC) simulations we show for the first time that (a) Gunn Effect can be induced in narrow silicon nanowires with diameters of 3.1 nm under 3 % tensile strain and an electric field of 5000 V/cm, (b) the onset of NDR in I-V characteristics is reversibly adjustable by strain and (c) strain can modulate the value of resistivity by a factor 2.3 for SiNWs of normal I-V characteristics i.e. those without NDR. These observations are promising for applications of SiNWs in electromechanical sensors and adjustable microwave oscillators.Comment: 18 pages, 6 figures, 63 reference

    Black Silicon with high density and high aspect ratio nanowhiskers

    Full text link
    Physical properties of black Silicon (b-Si) formed on Si wafers by reactive ion etching in chlorine plasma are reported in an attempt to clarify the formation mechanism and the origin of the observed optical and electrical phenomena which are promising for a variety of applications. The b-Si consisting of high density and high aspect ratio sub-micron length whiskers or pillars with tip diameters of well under 3 nm exhibits strong photoluminescence (PL) both in visible and infrared, which are interpreted in conjunction with defects, confinement effects and near band-edge emission. Structural analysis indicate that the whiskers are all crystalline and encapsulated by a thin Si oxide layer. Infrared vibrational spectrum of Si-O-Si bondings in terms of transverse-optic (TO) and longitudinal-optic (LO) phonons indicates that disorder induced LO-TO optical mode coupling can be an effective tool in assessing structural quality of the b-Si. The same phonons are likely coupled to electrons in visible region PL transitions. Field emission properties of these nanoscopic features are demonstrated indicating the influence of the tip shape on the emission. Overall properties are discussed in terms of surface morphology of the nano whiskers

    Interrelationship of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus colonization within and between pneumococcal-vaccine naïve mother-child dyads

    Get PDF
    Background: A high prevalence of bacterial nasopharyngeal co-infections has been reported in children, however, such data is limited in adults. We examined the interaction of Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumoniae pharyngeal colonization in mother-child dyads. Methods: Pneumococcal-vaccine naïve children and their mothers had pharyngeal swabs undertaken at 1.6, 2.5, 3.5, 4.5, 7.4, 9.5, 12.5, 16.2 and 24.2 months of child’s age. Swabs were cultured for S. pneumoniae, H. influenzae and S. aureus using standard microbiologic methods. Multivariate generalized estimating equation-models were used to explore the associations of the three bacteria within and between children and their mothers. Results: In children, the observed probability of co-colonization was higher than expected. Well-defined associations in colonization between the bacteria were observed in children but not among mothers. In children, a synergistic association was observed between S. pneumoniae and H. influenzae (Adjusted odds ratio (AOR): 1.75, 95% CI: 1.32-2.32) and a negative association between S. pneumoniae and S. aureus (AOR: 0.51, 95% CI: 0.39-0.67) or H. influenzae and S. aureus (AOR: 0.24, 95% CI: 0.16-0.34) colonization. Additionally, all three bacteria had a higher likelihood of concurrent colonization. There was a strong association in colonization by the bacteria in children and their mothers, including increased likelihood of maternal colonization if the child was colonized by S. pneumoniae (AOR: 1.84, 95% CI: 1.28-2.63) and H. influenzae (AOR: 6.34, 95% CI: 2.24-18.0). Conclusions: The effects of immunization of children with pneumococcal-conjugate-vaccine in settings such as ours needs monitoring with regard to potential changes of pharyngeal bacterial ecology which could occur in vaccinated and –unvaccinated age-groups

    The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing

    Get PDF
    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted micro wires the three-dimensional wires that push directly on a micro-fabricated chip, making electrical contact. A small wire cross section (~1 mmm), nearly non-magnetic components, and functionality at low temperatures make the quantum socket ideal to operate solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from DC to 8 GHz, with a contact resistance of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a proof of principle, we fabricated and used a quantum socket to measure superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs. (HiRes figs. and movies on request). Submitte

    Haptoglobin genotype is a determinant of survival and cardiac remodeling after myocardial infarction in diabetic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently demonstrated in man that a functional allelic polymorphism in the Haptoglobin (Hp) gene plays a major role in determining survival and congestive heart failure after myocardial infarction (MI). We sought to recapitulate the effect of Hp type on outcomes and cardiac remodeling after MI in transgenic mice.</p> <p>Methods</p> <p>The Hp 2 allele exists only in man. Wild type C57Bl/6 mice carry the Hp 1 allele with high homology to the human Hp 1 allele. We genetically engineered a murine Hp 2 allele and targeted its insertion by homologous recombination to the murine Hp locus to create Hp 2 mice. Diabetes Mellitus (DM) was induced with streptozotocin. MI was produced by occlusion of the left anterior descending artery in DM C57Bl/6 mice carrying the Hp 1 or Hp 2 allele. MI size was determined with TTC staining. Left ventricular (LV) function and dimensions were assessed by 2-dimensional echocardiography.</p> <p>Results</p> <p>In the absence of DM, Hp 1-1 and Hp 2-2 mice had similar LV dimensions and LV function. MI size was similar in DM Hp 1-1 and 2-2 mice 24 hours after MI (50.2 ± 2.1%and 46.9 ± 5.5%, respectively, p = 0.6). However, DM Hp 1-1 mice had a significantly lower mortality rate than DM Hp 2-2 mice 30 days after MI (HR 0.41, 95% CI (0.19–0.95), p = 0.037 by log rank). LV chamber dimensions were significantly increased in DM Hp 2-2 mice compared to DM Hp 1-1 mice 30 days after MI (0.196 ± 0.01 cm<sup>2 </sup>vs. 0.163 ± 0.01 cm<sup>2</sup>, respectively; p = 0.029).</p> <p>Conclusion</p> <p>In DM mice the Hp 2-2 genotype is associated with increased mortality and more severe cardiac remodeling 30 days after MI.</p

    Genetic testing of children for adult-onset conditions: opinions of the British adult population and implications for clinical practice

    No full text
    This study set out to explore the attitudes of a representative sample of the British public towards genetic testing in children to predict disease in the future. We sought opinions about genetic testing for adult-onset conditions for which no prevention/treatment is available during childhood, and about genetic 'carrier' status to assess future reproductive risks. The study also examined participants' level of agreement with the reasons professional organisations give in favour of deferring such testing. Participants (n=2998) completed a specially designed questionnaire, distributed by email. Nearly half of the sample (47%) agreed that parents should be able to test their child for adult-onset conditions, even if there is no treatment or prevention at time of testing. This runs contrary to professional guidance about genetic testing in children. Testing for carrier status was supported by a larger proportion (60%). A child's future ability to decide for her/himself if and when to be tested was the least supported argument in favour of deferring testing.European Journal of Human Genetics advance online publication, 5 November 2014; doi:10.1038/ejhg.2014.221
    corecore