29 research outputs found

    Brown and Brite: The Fat Soldiers in the Anti-obesity Fight

    Get PDF
    Brown adipose tissue (BAT) is proposed to maintain thermal homeostasis through dissipation of chemical energy as heat by the uncoupling proteins (UCPs) present in their mitochondria. The recent demonstration of the presence of BAT in humans has invigorated research in this area. The research has provided many new insights into the biology and functioning of this tissue and the biological implications of its altered activities. Another finding of interest is browning of white adipose tissue (WAT) resulting in what is known as beige/brite cells, which have increased mitochondrial proteins and UCPs. In general, it has been observed that the activation of BAT is associated with various physiological improvements such as a reduction in blood glucose levels increased resting energy expenditure and reduced weight. Given the similar physiological functions of BAT and beige/ brite cells and the higher mass of WAT compared to BAT, it is likely that increasing the brite/beige cells in WATs may also lead to greater metabolic benefits. However, development of treatments targeting brown fat or WAT browning would require not only a substantial understanding of the biology of these tissues but also the effect of altering their activity levels on whole body metabolism and physiology. In this review, we present evidence from recent literature on the substrates utilized by BAT, regulation of BAT activity and browning by circulating molecules. We also present dietary and pharmacological activators of brown and beige/brite adipose tissue and the effect of physical exercise on BAT activity and browning

    A Three Stage Integrative Pathway Search (TIPS©) framework to identify toxicity relevant genes and pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to obtain profiles of gene expressions, proteins and metabolites with the advent of high throughput technologies has advanced the study of pathway and network reconstruction. Genome-wide network reconstruction requires either interaction measurements or large amount of perturbation data, often not available for mammalian cell systems. To overcome these shortcomings, we developed a Three Stage Integrative Pathway Search (<it>TIPS</it><sup>©</sup>) approach to reconstruct context-specific active pathways involved in conferring a specific phenotype, from limited amount of perturbation data. The approach was tested on human liver cells to identify pathways that confer cytotoxicity.</p> <p>Results</p> <p>This paper presents a systems approach that integrates gene expression and cytotoxicity profiles to identify a network of pathways involved in free fatty acid (FFA) and tumor necrosis factor-α (TNF-α) induced cytotoxicity in human hepatoblastoma cells (HepG2/C3A). Cytotoxicity relevant genes were first identified and then used to reconstruct a network using Bayesian network (BN) analysis. BN inference was used subsequently to predict the effects of perturbing a gene on the other genes in the network and on the cytotoxicity. These predictions were subsequently confirmed through the published literature and further experiments.</p> <p>Conclusion</p> <p>The <it>TIPS</it><sup>© </sup>approach is able to reconstruct active pathways that confer a particular phenotype by integrating gene expression and phenotypic profiles. A web-based version of <it>TIPS</it><sup>© </sup>that performs the analysis described herein can be accessed at <url>http://www.egr.msu.edu/tips</url>.</p

    A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity.</p> <p>Results</p> <p>A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model.</p> <p>Conclusion</p> <p>The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated.</p

    A genome scale model of Geobacillus thermoglucosidasius (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate

    Get PDF
    Rice straw is a major crop residue which is burnt in many countries, creating signicant air pollution. Thus, alternative routes for disposal of rice straw are needed. Biotechnological treatment of rice straw hydrolysate has potential to convert this agriculture waste into valuable biofuel(s) and platform chemicals. Geobacillus thermoglucosidasius is a thermophile with properties specially suited for use as a biocatalyst in lignocellulosic bioprocesses, such as high optimal temperature and tolerance to high levels of ethanol. However, the capabilities of Geobacillus thermoglucosidasius to utilize sugars in rice straw hydrolysate for making bioethanol and other platform chemicals have not been fully explored. In this work, we have created a genome scale metabolic model (denoted iGT736) of the organism containing 736 gene products, 1159 reactions and 1163 metabolites. The model was validated both by purely theoretical approaches and by comparing the behaviour of the model to previously published experimental results. The model was then used to determine the yields of a variety of platform chemicals from glucose and xylose - two primary sugars in rice straw hydrolysate. A comparison with results from a model of Escherichia coli shows that G. thermoglucosidasius is capable of producing a wider range of products, and that for the products also produced by E. coli , the yields are comparable. We also discuss strategies to utilise arabinose, a minor component of rice straw hydrolysate, and propose additional reactions to lead to the synthesis of xylitol, not currently produced by G. thermoglucosidasius. Our results provide additional motivation for the current exploration of the industrial potential of G. thermoglucosidasius and we make our model publicly available to aid the development of metabolic engineering strategies for this organism

    Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production

    Get PDF
    Biologically-derived hydrocarbons are considered to have great potential as next-generation biofuels owing to the similarity of their chemical properties to contemporary diesel and jet fuels. However, the low yield of these hydrocarbons in biotechnological production is a major obstacle for commercialization. Several genetic and process engineering approaches have been adopted to increase the yield of hydrocarbon, but a model driven approach has not been implemented so far. Here, we applied a constraint-based metabolic modeling approach in which a variable demand for alkane biosynthesis was imposed, and co-varying reactions were considered as potential targets for further engineering of an E. coli strain already expressing cyanobacterial enzymes towards higher chain alkane production. The reactions that co-varied with the imposed alkane production were found to be mainly associated with the pentose phosphate pathway (PPP) and the lower half of glycolysis. An optimal modeling solution was achieved by imposing increased flux through the reaction catalyzed by glucose-6-phosphate dehydrogenase (zwf) and iteratively removing 7 reactions from the network, leading to an alkane yield of 94.2% of the theoretical maximum conversion determined by in silico analysis at a given biomass rate. To validate the in silico findings, we first performed pathway optimization of the cyanobacterial enzymes in E. coli via different dosages of genes, promoting substrate channelling through protein fusion and inducing substantial equivalent protein expression, which led to a 36-fold increase in alka(e)ne production from 2.8 mg/L to 102 mg/L. Further, engineering of E. coli based on in silico findings, including biomass constraint, led to an increase in the alka(e)ne titer to 425 mg/L (major components being 249 mg/L pentadecane and 160 mg/L heptadecene), a 148.6-fold improvement over the initial strain, respectively; with a yield of 34.2% of the theoretical maximum. The impact of model-assisted engineering was also tested for the production of long chain fatty alcohol, another commercially important molecule sharing the same pathway while differing only at the terminal reaction, and a titer of 1506 mg/L was achieved with a yield of 86.4% of the theoretical maximum. Moreover, the model assisted engineered strains had produced 2.54 g/L and 12.5 g/L of long chain alkane and fatty alcohol, respectively, in the bioreactor under fed-batch cultivation condition. Our study demonstrated successful implementation of a combined in silico modeling approach along with the pathway and process optimization in achieving the highest reported titers of long chain hydrocarbons in E. coli

    Integration of Aspergillus niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate

    Get PDF
    BACKGROUND: Citric acid is typically produced industrially by Aspergillus niger-mediated fermentation of a sucrose-based feedstock, such as molasses. The fungus Aspergillus niger has the potential to utilise lignocellulosic biomass, such as bagasse, for industrial-scale citric acid production, but realising this potential requires strain optimisation. Systems biology can accelerate strain engineering by systematic target identification, facilitated by methods for the integration of omics data into a high-quality metabolic model. In this work, we perform transcriptomic analysis to determine the temporal expression changes during fermentation of bagasse hydrolysate and develop an evolutionary algorithm to integrate the transcriptomic data with the available metabolic model to identify potential targets for strain engineering. RESULTS: The novel integrated procedure matures our understanding of suboptimal citric acid production and reveals potential targets for strain engineering, including targets consistent with the literature such as the up-regulation of citrate export and pyruvate carboxylase as well as novel targets such as the down-regulation of inorganic diphosphatase. CONCLUSIONS: In this study, we demonstrate the production of citric acid from lignocellulosic hydrolysate and show how transcriptomic data across multiple timepoints can be coupled with evolutionary and metabolic modelling to identify potential targets for further engineering to maximise productivity from a chosen feedstock. The in silico strategies employed in this study can be applied to other biotechnological goals, assisting efforts to harness the potential of microorganisms for bio-based production of valuable chemicals

    Hydrolysis of p-nitrophenyl laurate in supercritical carbon dioxide: comparison of two different enzymes

    No full text
    The enzymatic hydrolysis of p-nitrophenyl laurate (PNPL) to p-nitrophenol (PNP) was studied in supercritical carbon dioxide using crude Hog Pancreas Lipase (HPL) and P roqueforti Lipase (PRL). The two enzymes were compared for their optimal activity temperatures and reaction kinetics. HPL had a higher optimal temperature (65oC)(65^oC) and better yield (22.5%) compared with PRL whose optimal temperature was 50oC50^oC with a 15.3% yield. This is considerably higher than the optimum temperature of 37oC37^oC and yields of less than 1% observed in the aqueous medium

    FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses

    No full text
    13C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13C-MFA software that works in various operating systems will enable more researchers to perform 13C-MFA and to further modify and develop the package

    Biochemical Characteristics and a Genome-Scale Metabolic Model of an Indian Euryhaline Cyanobacterium with High Polyglucan Content

    No full text
    Marine cyanobacteria are promising microbes to capture and convert atmospheric CO2 and light into biomass and valuable industrial bio-products. Yet, reports on metabolic characteristics of non-model cyanobacteria are scarce. In this report, we show that an Indian euryhaline Synechococcus sp. BDU 130192 has biomass accumulation comparable to a model marine cyanobacterium and contains approximately double the amount of total carbohydrates, but significantly lower protein levels compared to Synechococcus sp. PCC 7002 cells. Based on its annotated chromosomal genome sequence, we present a genome scale metabolic model (GSMM) of this cyanobacterium, which we have named as iSyn706. The model includes 706 genes, 908 reactions, and 900 metabolites. The difference in the flux balance analysis (FBA) predicted flux distributions between Synechococcus sp. PCC 7002 and Synechococcus sp. BDU130192 strains mimicked the differences in their biomass compositions. Model-predicted oxygen evolution rate for Synechococcus sp. BDU130192 was found to be close to the experimentally-measured value. The model was analyzed to determine the potential of the strain for the production of various industrially-useful products without affecting growth significantly. This model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for the production of industrially-relevant compounds

    A Genome-Scale Metabolic Model of Thalassiosira pseudonana CCMP 1335 for a Systems-Level Understanding of Its Metabolism and Biotechnological Potential

    No full text
    Thalassiosira pseudonana is a transformable and biotechnologically promising model diatom with an ability to synthesise nutraceuticals such as fucoxanthin and store a significant amount of polyglucans and lipids including omega-3 fatty acids. While it was the first diatom to be sequenced, a systems-level analysis of its metabolism has not been done yet. This work presents first comprehensive, compartmentalized, and functional genome-scale metabolic model of the marine diatom Thalassiosira pseudonana CCMP 1335, which we have termed iThaps987. The model includes 987 genes, 2477 reactions, and 2456 metabolites. Comparison with the model of another diatom Phaeodactylum tricornutum revealed presence of 183 unique enzymes (belonging primarily to amino acid, carbohydrate, and lipid metabolism) in iThaps987. Model simulations showed a typical C3-type photosynthetic carbon fixation and suggested a preference of violaxanthin&ndash;diadinoxanthin pathway over violaxanthin&ndash;neoxanthin pathway for the production of fucoxanthin. Linear electron flow was found be active and cyclic electron flow was inactive under normal phototrophic conditions (unlike green algae and plants), validating the model predictions with previous reports. Investigation of the model for the potential of Thalassiosira pseudonana CCMP 1335 to produce other industrially useful compounds suggest iso-butanol as a foreign compound that can be synthesized by a single-gene addition. This work provides novel insights about the metabolism and potential of the organism and will be helpful to further investigate its metabolism and devise metabolic engineering strategies for the production of various compounds
    corecore