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Abstract

Background: Citric acid is typically produced industrially by Aspergillus niger-mediated fermentation of a sucrose-
based feedstock, such as molasses. The fungus Aspergillus niger has the potential to utilise lignocellulosic biomass,
such as bagasse, for industrial-scale citric acid production, but realising this potential requires strain optimisation.
Systems biology can accelerate strain engineering by systematic target identification, facilitated by methods for the
integration of omics data into a high-quality metabolic model. In this work, we perform transcriptomic analysis to
determine the temporal expression changes during fermentation of bagasse hydrolysate and develop an evolution-
ary algorithm to integrate the transcriptomic data with the available metabolic model to identify potential targets for
strain engineering.

Results: The novel integrated procedure matures our understanding of suboptimal citric acid production and
reveals potential targets for strain engineering, including targets consistent with the literature such as the up-regu-
lation of citrate export and pyruvate carboxylase as well as novel targets such as the down-regulation of inorganic
diphosphatase.

Conclusions: In this study, we demonstrate the production of citric acid from lignocellulosic hydrolysate and show
how transcriptomic data across multiple timepoints can be coupled with evolutionary and metabolic modelling to
identify potential targets for further engineering to maximise productivity from a chosen feedstock. The in silico strat-
egies employed in this study can be applied to other biotechnological goals, assisting efforts to harness the potential
of microorganisms for bio-based production of valuable chemicals.
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Background

For a century, the filamentous fungus Aspergillus niger
has been used industrially for the production of cit-
ric acid; currently, production exceeds 2 million tonnes
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a year [1]. The ease of culture and its tolerance to typi-
cal industrial fermentation stresses make A. niger [2] a
desirable organism for industrial applications. Beyond its
established uses, A. niger also has potential to produce
other valuable chemicals including succinic [3] and ita-
conic acid [4].

The commercial production of citric acid by A. niger
fermentation is dependent on sucrose-based feed-
stocks, primarily molasses [5]. In this regard, A. niger is
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underexploited as it is saprophytic in nature with an abil-
ity to assimilate at least 69 carbon sources and 30 nitro-
gen sources [6]. There is an increasing need to unlock this
metabolic potential, so that A. niger can play a key role in
harnessing the value of underutilised second-generation
feedstocks for the bioeconomy [7]. One such feedstock
is sugarcane bagasse, the main by-product of sugarcane
processing and a potential source of lignocellulosic sug-
ars. Global sugarcane production was around 1900 mil-
lion tonnes in 2013 [8], generating around half a billion
tonnes of bagasse. To achieve cost-competitive citric acid
production from bagasse hydrolysate requires the opti-
misation of strains away from sucrose-based fermenta-
tion to bagasse hydrolysate as the fermentation medium.

Strain optimisation can be achieved either via cycles of
random mutagenesis and selection or by targeted engi-
neering. The former is well demonstrated for citric acid
production by A. niger [9], and although successful, its
iterative nature makes it laborious and requires a suit-
able selection and evolution strategy to be available or
designed. Rational strain engineering provides a faster
strain development process that achieves the required
genetic changes in a more stable manner. Optimising
strains via targeted engineering is dependent on a meta-
bolic understanding of the target organism and an abil-
ity to accurately identify targets. The establishment of
omics technologies has enabled researchers to develop a
more comprehensive understanding of the target organ-
ism; however, this can be challenging given the volume
of data from omics analyses. One core systems biology
method, constraint-based metabolic modelling, has now
developed an extraordinary number of differing methods
to address this challenge and integrate omics data with
metabolic models [10-16].

In this study, we highlight the potential of bagasse as
a feedstock for citric acid production, examining the
performance of A. niger for the fermentation of bagasse
hydrolysate to citric acid. Using fermentative time series
data, we adapted our dynamic model [17] to capture the
dynamics of bagasse hydrolysate fermentation. We show
that the performance of the strain in this study is subop-
timal and investigate further using transcriptome analy-
sis at key fermentation timepoints. By employing a novel
method involving an evolutionary algorithm guided by
transcriptome data, we identify targets to achieve opti-
mal citric acid productivity from bagasse hydrolysate.

Results

Fermenting sugarcane bagasse hydrolysate to produce
citric acid

To evaluate the fermentation of sugarcane bagasse hydro-
lysate for the production of citric acid, we obtained fer-
mentative time series data on citric and biomass output

Page 2 of 18

as well as glucose, xylose, and phosphate input. From
a hydrolysate containing 120 g/L total sugars consist-
ing of glucose (80 g/L) and xylose (40 g/L), 50 g/L citric
acid was produced in 6 days (Fig. 1). Glucose was fully
consumed by day 5 at which point xylose consumption
increased significantly with full consumption of sugars
by day 7, indicating a sequential uptake mechanism. We
observed similar characteristics to citric acid fermen-
tations performed previously [17] with the onset of cit-
ric acid production coinciding with the full depletion of
external phosphate and a switch to phosphate-limited
growth.

Simulating the fermentation of sugarcane bagasse
hydrolysate to citric acid by dynamic modelling

To capture the dynamics of sugarcane bagasse hydro-
lysate fermentation in silico, we adapted our dynamic
modelling framework [17] to reflect mixed glucose/xylose
fermentations. The adapted model simulates the sequen-
tial uptake of glucose and xylose and with adjustments
made to kinetic parameters (see Methods) gives close
fits to the in vivo fermentation data (Fig. 1). The model
estimated that citric acid titres could reach a maximum
of 85 g/L, almost twofold higher than what we observed
in vivo (Fig. 1). By imposing a constraint on citric acid
output in silico, the model was able to reflect in vivo cit-
ric acid production (Fig. 1), suggesting the strain we used
is suboptimal and highlighting the need for strain optimi-
sation to realise optimal productivity.

Transcriptomic analysis at selected timepoints
to investigate the fermentation of sugarcane bagasse
hydrolysate to citric acid
To extend our investigation, we performed transcrip-
tomic analysis at three key fermentation timepoints
(Fig. 1). The first timepoint (T1) was taken, while external
phosphate was still present before the onset of citric acid
production and phosphate-limited growth. The other two
timepoints (T2 and T3) were taken during citric acid pro-
duction; the first of these (T2), while glucose was being
consumed and the second (T3) during the main xylose
consumption phase after glucose was fully consumed.
Differential expression analysis revealed a greater degree
of similarity between the two citric acid producing time-
points (T2 and T3) than for comparisons between these
and the non-citric acid producing timepoint (T1) (Fig. 2).
To enable us to identify potential in vivo constraints
that limit citric acid production, we associated transcripts
with the reactions in the metabolic model and deter-
mined expression at a reaction-level. The most differen-
tially expressed transcripts with reaction associations
are shown in Tables 1, 2, 3. With reaction-level expres-
sion determined, we constructed metabolic schematics to
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Fig. 1 Time series of sugarcane bagasse hydrolysate fermentation with dynamic modelling. Green dots correspond to in vivo fermentation data.
Purple dashed vertical lines indicate timepoints chosen for transcriptome analysis. Purple triangles correspond to data from cultures used for
transcriptome sampling. Solid brown lines represent in silico data from a simulation with citric output constrained to fit the in vivo data. A Change
in biomass dry weight (g/L) over time. B Change in external phosphate concentration (g/L) over time. C Change in external citric acid concentration
(g/L) over time. Dashed brown line represents in silico data from a simulation with unconstrained citric output. D Change in external glucose
concentration (g/L) over time. E Change in external xylose concentration (g/L) over time. Individual data-points are shown

visualise the changes in the transcriptome and their reac-
tion-level effects for a given comparison (Fig. 3).

In comparing T1 with T2, the scale of change is clear
when transitioning to citric acid production with wide-
spread differential expression events observed across
metabolism (Fig. 3A). In particular, reactions involved
in biomass production were down-regulated, while cit-
rate export was up-regulated together with the down-
regulation of TCA cycle reactions involved in citrate
catabolism. Unexpectedly, pyruvate carboxylase whose
activity is important to citric acid production [18] was

down-regulated, suggesting this step as a point of con-
straint in vivo.

The expression changes are less extensive when tran-
sitioning from glucose to xylose consumption and
appear to be directed at the change in substrate use
(Fig. 3B). These include up-regulation of xylose import
and xylulose kinase as well as phosphoketolase and ace-
tate kinase that appear to activate an alternative xylose
catabolic pathway, which may be associated with up-
regulation of the glyoxylate shunt through an increased
supply of acetyl-CoA. We also observed further
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up-regulation of citrate export, yet the rate of citric
acid production in silico is around 2.3 times higher
at T2 than T3 when citric output is unconstrained
(Table 4). The lower citrate exporter expression at T2

up-regulated. Red dots indicate transcripts that are down-regulated.
Grey dots indicate transcripts that are not significantly differentially
expressed. A g value (adjusted p value) threshold of 0.01 was applied
to determine statistical significance. The x-axis corresponds to log2FC
between selected timepoints. The y-axis corresponds to —log10 of
the g value (adjusted p value). Data-points corresponding to the most
significantly differentially expressed transcripts (g value < 1E—40 and
ranked by log2FC) with reaction associations in iDU1327 are circled.
A Differential expression analysis between T1 and T2. The transcripts
and their associated reactions that correspond to circled data-points
are given in Table 1. B Differential expression analysis between T1 and
T3.The transcripts and their associated reactions that correspond

to circled data-points are given in Table 2. C Differential expression
analysis between T2 and T3. The transcripts and their associated
reactions that correspond to circled data-points are given in Table 3

with respect to T3 may indicate citrate export as a
point of constraint in vivo.

Investigating suboptimal citric acid production

by transcriptome-guided in silico evolution

To develop a metabolic understanding of suboptimal cit-
ric acid production, we developed an evolutionary algo-
rithm to perform in silico evolution of the model with
the aim of reflecting non-optimised strains. We focused
on T2 as citric output is around 2.6 times higher at T2
when unconstrained (Table 4) than when constrained
(Table 5) to fit in vivo data, whereas citric output at T3 is
virtually the same. The objective was to identify changes
to flux bounds that constrain citric output to the value
that closely fits in vivo data while maintaining the same
carbon input and biomass output. To achieve this, we
adapted an evolutionary algorithm [19] to evolve the
model to more accurately reflect the in vivo metabolic
state that is associated with constrained citric produc-
tion. As many solutions may exist to this, we used the
transcriptomic data to guide the in silico evolution to
limit solutions to those that are more likely to resemble
the one indicated by the transcriptome. This constrained
the evolutionary algorithm to alter flux bounds only on
reactions where there is a significant differential expres-
sion, with such cases implying transcriptional regulation
over the reaction’s activity. We compared and analysed
the solutions from eight independent runs of the evolu-
tionary algorithm to suggest targets for increasing citric
acid productivity (Fig. 4). In total, we found 91 reactions
suggested for targeted intervention of their activity; 65
for down-regulation and 26 for up-regulation (Table 6).
Together, the list of targets provides high coverage of
all potential targets that could bring about optimal cit-
ric acid production. Some of the targets were expected
and consistent with the literature for example the
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Table 1 Most significantly differentially expressed transcripts between timepoints T1 and T2 with reaction associations in iDU1327

Transcript ID Effect

Log2FC Associated reactions in iDU1327

Names of associated reactions

Aspni_transcript.chr_202G213.1  Down-regulated —9.7 R462; R463; N1; R464
Aspni_transcript.chr_202G683.1  Down-regulated —8.9 R623
Aspni_transcript.chr_401G28.1  Down-regulated —8.1 R258; R259
Aspni_transcript.chr_701G586.1 Down-regulated —6.4 R1227
Aspni_transcript.chr_202G195.1  Down-regulated —6.1 R462; R463; N1; R464
Aspni_transcriptchr_101G17.1  Down-regulated —5.5 R332;R333; R334

Aspni_transcript.chr_304G54.1  Down-regulated —5 R74;R511

Aspni_transcript.chr_302G484.1 Down-regulated —4.8 R305; R335; NR2
Aspni_transcript.chr_301G287.1 Down-regulated —4.5 R477,RA85; R1246
Aspni_transcript.chr_101G512.1 Down-regulated —4.4 R417;R418

Aspni_transcript.chr_604G19.1  Up-regulated 10.8

Aspni_transcript.chr_402G104.3  Up-regulated 84 R377
Aspni_transcript.chr_202G947.1  Up-regulated 84 R35
Aspni_transcript.chr_601G472.1  Up-regulated 8.1 R398
Aspni_transcript.chr_604G21.1  Up-regulated 8 R124;R131
Aspni_transcript.chr_601G138.1  Up-regulated 74 R490
Aspni_transcriptchr_601G143.1  Up-regulated 7.2 R1187
Aspni_transcript.chr_402G104.6  Up-regulated 7.1 R377
Aspni_transcript.chr_503G231.2  Up-regulated 7 R411

Aspni_transcript.chr_603G120.1  Up-regulated 6.9

R89; R90; R95; R96; R97; R98

R791; R796; R801; R806; R811; R816; R821;

Catalase

5-Oxo-L-proline amidohydrolase (ATP-
hydrolysing)

Glucose oxidase

Sulphite reductase

Catalase

Alpha-galactosidase

Formate oxidase; Phosphoglycerate dehy-
drogenase

Fructan beta-fructosidase; Invertase;
Stachyose fructohydrolase

Argininosuccinate synthase;
L-alanine:tRNA(Ala) ligase

Chitinase

Propanoate:CoA ligase (AMP-forming);
Propionyl-CoA synthetase

Salicylate hydroxylase
Citrate synthase
4-Carboxymuconolactone decarboxylase

Dihydrofolate synthase; Tetrahydrofolylpo-
lyglutamate synthase

Acetylglutamate kinase

Trans, trans-farnesyl-
diphosphate:isopentenyl-diphosphate
farnesyltranstransferase

Salicylate hydroxylase
Glucosamine-6-phosphate deaminase
3-Oxoacyl-[acyl-carrier-protein] reductase

R826; R831; R837; R842; R847; R852; R857;
R862; R867; R872

Transcripts shown have g value < 1E—40 and are ranked by log2FC

up-regulation of citrate export and pyruvate carboxylase,
while other targets were novel such as the down-regula-
tion of inorganic diphosphatase.

Discussion

In our in vivo fermentation experiments with sugarcane
bagasse hydrolysate, we observed a promising yield of cit-
ric acid; up to 50 g/L in 6 days from 80 g/L glucose and
40 g/L xylose. In our simulations, however, up to 85 g/L
citric acid could be produced. By our analysis of the tran-
scriptome at key timepoints and with our in silico toolkit,
we have determined what may underlie the suboptimal
citric acid production. The exhaustive list of targets all
involve a common feature: an aim to minimise carbon
loss as CO, and maximise citric output.

One example of a target that is associated with mini-
mising carbon loss via CO, is the down-regulation of
inorganic diphosphatase. Forcing flux of this reac-
tion alone was able to decrease citric output to the
target value, suggesting that a high level of inorganic

diphosphatase activity may negatively affect citric acid
production. The reaction catalysed by inorganic diphos-
phatase acts to dissipate energy, thereby supporting a
high carbon input flux with carbon output predomi-
nantly to CO,. This finding also relates to our previ-
ous work [17] on the relationship between phosphate
levels and citric acid production. Decreased activity of
inorganic diphosphatase may limit internal phosphate
levels and enhance citric acid production. The majority
of our targets for down-regulation are associated with
anabolic pathways involved in the synthesis of biomass
components. As the production of biomass becomes
restricted by phosphate availability during citric acid
production, any excess in anabolic flux would result in
futile pathways. Comparison of the biomass output flux
values between T2 and T3 reveals that the growth rate
is ~30-fold higher at T2, yet the fold changes in expres-
sion of anabolic reactions are significantly less than the
fold change in growth rate, suggesting that the expres-
sion of these reactions is not excessive at T2.



Upton et al. Biotechnology for Biofuels and Bioproducts

(2022) 15:4

Page 6 of 18

Table 2 Most significantly differentially expressed transcripts between timepoints T1 and T3 with reaction associations in iDU1327

Transcript ID

Effect

Log2FC Associated reactions in iDU1327

Names of associated reactions

Dihydroxy acid dehydratase
Catalase

5-Oxo-L-proline amidohydrolase (ATP-
hydrolysing)

Catalase
Glucose oxidase

3-Oxoacyl-[acyl-carrier-protein] synthase

Sulphite reductase

ATP synthase

Uracil phosphoribosyltransferase
Catalase

Salicylate hydroxylase

Aspni_transcript.chr_601G340.1  Down-regulated —11.5 R544; R554

Aspni_transcript.chr_202G213.1  Down-regulated —10.7 R462; R463; N1; R464

Aspni_transcript.chr_202G683.1  Down-regulated —10.7  R623

Aspni_transcript.chr_102G681.1  Down-regulated —10.6  R462;R463; N1; R464

Aspni_transcript.chr_401G28.1 Down-regulated —9.3 R258; R259

Aspni_transcript.chr_801G200.1  Down-regulated —8.38 R790; R795; R800; R805; R810; R815; R820:;
R825; R830; R836; R841; R846; R851; R856;
R861; R866; R871

Aspni_transcript.chr_701G586.1  Down-regulated —7.4 R1227

Aspni_transcript.chr_603G16.1 Down-regulated —6.9 R451

Aspni_transcript.chr_302G588.1  Down-regulated —6.9 R719

Aspni_transcript.chr_202G195.1  Down-regulated —6.5 R462; R463; N1; R464

Aspni_transcript.chr_402G104.3  Up-regulated 9.5 R377

Aspni_transcript.chr_601G472.1  Up-regulated 94 R398

Aspni_transcript.chr_202G1357.1  Up-regulated 83

NR37
Aspni_transcript.chr_601G138.1  Up-regulated 8 R490
Aspni_transcript.chr_402G104.6 ~ Up-regulated 7.7 R377
Aspni_transcript.chr_601G80.1 Up-regulated 76 R65; R66
Aspni_transcriptchr_601G143.1  Up-regulated 76 R1187

Aspni_transcript.chr_401G532.1
Aspni_transcript.chr_503G231.2
Aspni_transcript.chr_304G666.1

Up-regulated 7.5
Up-regulated 74 R411

Up-regulated 7.2

R362; R618; R619; R785; R1244; NR28;

R378; R402; R404; R615; NR23

R211;R1115

4-Carboxymuconolactone decarboxylase

Benzonitrilase; Nitrilase; Formamide hydro-
lyase; Phenylacetonitrile aminohydrolase

Acetylglutamate kinase
Salicylate hydroxylase
Oxalate decarboxylase

Trans,trans-farnesyl-
diphosphate:isopentenyl-diphosphate
farnesyltranstransferase

Amine oxidase
Glucosamine-6-phosphate deaminase

Glycerol 3-phosphate dehydrogenase
(NAD + dependent)

Transcripts shown have g value < 1E—40 and are ranked by log2FC

Among our targets are expected changes in metabolism
including the up-regulation of citrate export and pyru-
vate carboxylase, both of which have significantly lower
expression at T2 with respect to T3. The flux through
these steps would be higher at T2 than T3 in the case of
optimal citric acid production, suggesting that expression
should also be higher at T2 contrary to what we see in
this study. The citrate exporter has been overexpressed
previously which resulted in a fivefold increase in citric
acid production [20], and pyruvate carboxylase has been
overexpressed for increasing production of malic acid
[21].

The importance of energy metabolism to citric acid
production is highlighted by the frequent targeting of
oxidative phosphorylation reactions. These reactions
were down-regulated from T1 to T2 by around 2-2.6-
fold, and constraining the flux of these reactions in line
with the transcriptome data led to a drop in citric pro-
duction. This may seem counter-intuitive as the addi-
tion of oxidative phosphorylation inhibitors has been
shown to increase citric acid production; however, nega-
tive effects were observed when the activity of oxidative

phosphorylation was too low [22]. This is consistent with
our study, which shows that over-constraint of oxidative
phosphorylation decreases citric output.

The objective of our study was to identify targets for
increasing citric acid production by integrating tran-
scriptome data with metabolic modelling. Many efforts
have been made to integrate transcriptome data with
metabolic models, with early examples including the
GIMME algorithm [10], E-Flux [11], and iMAT [13],
and more recently SPOT [15]. A disadvantage of these
approaches was their use of absolute expression data that
may not correlate closely with reaction activity. An alter-
native is to use differential expression data that indicate
which reactions are subject to transcriptional regulation,
such as MADE where differential expression data are
used to determine binary expression states [14]. Other
methods include PROM that requires a regulatory net-
work [12] and LBFBA that relies on flux data to param-
eterise linear reaction-specific functions to determine
flux bounds from expression data [16]. Our approach
infers from differential expression data the metabolic fac-
tors that underpin suboptimal citric acid production in
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Table 3 Most significantly differentially expressed transcripts between timepoints T2 and T3 with reaction associations in iDU1327

Log2FC Associated reactions in iDU1327

Names of associated reactions

R228;R230; R791; R796; R801; R806; R811;
R816; R821; R826; R831; R837; R842; R847;

Uracil phosphoribosyltransferase

GTP 7,8-8,9-dihydrolase (diphosphate-
forming)

3-Hydroxy-3-methylglutaryl coenzyme A
synthase

Alcohol dehydrogenase

-Xylulose reductase;3-Oxoacyl-[acyl-
carrier-protein] reductase

R852; R857; R862; R867; R872

R791; R796; R801; R806; R811; R816; R821;

ATP synthase
3-Oxoacyl-[acyl-carrier-protein] reductase

R826; R831; R837; R842; R847; R852; R857;

alpha-amylase

Transcript ID Effect
Aspni_transcript.chr_302G588.1  Down-regulated —8.9 R719
Aspni_transcript.chr_302G590.1  Down-regulated —7.3 R173
Aspni_transcript.chr_401G344.1  Down-regulated —4.8 R1176
Aspni_transcript.chr_202G1142.1 Down-regulated —4.6 R193;R198
Aspni_transcript.chr_802G171.1  Down-regulated —44
Aspni_transcript.chr_603G16.1 Down-regulated —4.1 R451
Aspni_transcriptchr_102G146.1  Down-regulated —3.7

R862; R867; R872
Aspni_transcript.chr_101G224.1  Down-regulated —3.3 R322
Aspni_transcript.chr_304G378.1  Down-regulated —3.2

R791; R796; R801; R806; R811; R816; R821;

3-Oxoacyl-[acyl-carrier-protein] reductase

R826; R831; R837; R842; R847; R852; R857;
R862; R867; R872

Aspni_transcript.chr_801G344.1  Down-regulated —3

R182; R188; R265; R1207; NR14; NR26

Riboflavin-5-phosphate phosphohydrolase;
Thiamin monophosphate phosphohydro-
lase; Phosphatidate phosphatase; 4-Nitro-
phenyl phosphate phosphohydrolase;
Glycerone phosphate phosphohydrolase

Aspni_transcript.chr_304G666.1  Up-regulated 48 R211;R1115 Glycerol 3-phosphate dehydrogenase
(NAD + dependent)
Aspni_transcript.chr_101G504.1  Up-regulated 47 R71;R75;R516 S-(hydroxymethyl)glutathione dehydro-
genase; Formaldehyde dehydrogenase;
Threonine dehydrogenase
Aspni_transcriptchr_602G2712  Up-regulated 4.7 R107; R108 Succinate-semialdehyde dehydrogenase
Aspni_transcript.chr_501G182.1  Up-regulated 4.6 R106;R611 4-Aminobutyrate transaminase
Aspni_transcript.chr_102G293.1  Up-regulated 4.5 R107; R108 Succinate-semialdehyde dehydrogenase

Aspni_transcript.chr_202G964.1  Up-regulated 38

Aspni_transcript.chr_101G108.1  Up-regulated 37

Aspni_transcript.chr_402G585.2  Up-regulated 37 R33; R34
Aspni_transcript.chr_202G803.1  Up-regulated 36 R103; R104
Aspni_transcript.chr_402G613.1  Up-regulated 3.1 R78

R153; R479; R604

R378; R402; R404; R615; NR23

Adenosyl:methionine-8-amino-7-oxon-
onanoate aminotransferase; Ornithine
fransaminase

Amine oxidase
Phosphoketolase

Methylmalonate-semialdehyde dehydro-
genase

Pyruvate decarboxylase

Transcripts shown have g value < 1E—40 and are ranked by log2FC

Aspergillus, and is tailored to applications where there is
a defined metabolic goal. Its basis is an evolutionary algo-
rithm with changes to flux bounds guided by differential
expression data. Its limitation is that it outputs a set of
possible solutions rather than a unique solution.

Conclusions

In this study, we demonstrate the production of citric
acid from lignocellulosic hydrolysate by an engineered
variant of A. niger ATCC1015. By performing in silico
simulations using a dynamic model, we show how tran-
scriptomic data across multiple timepoints can be cou-
pled with evolutionary and metabolic modelling to

inform targeted engineering strategies aimed at maxim-
ising productivity from a chosen feedstock. The same in
silico strategies employed here can be applied to other
biotechnological goals, assisting efforts to harness the
potential of microorganisms for bio-based production of
valuable chemicals.

Methods

Preparation of sugarcane bagasse hydrolysate

Sugarcane bagasse was obtained from Natems Sugar Pvt.
Ltd. (India) and dried at 50 °C overnight to reach con-
stant weight. Bagasse was milled using a knife mill with
a 1 mm sieve prior to pre-treatment. Pre-treatment was
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Fig. 3 Metabolic schematics showing the key changes in the transcriptome from T1 to T2 (A) and from T2 to T3 (B) and their reaction-level effects
Green upward and red downward arrows indicate significantly up- and down-regulated reactions, respectively (g value <0.01 and log2FC>0.7). The
arrow width is directly proportional to the log2FC value. The full names of abbreviated metabolites are given in the iDU1327 model (see Additional

file 1). Reactions included are shown in simplified form with only key reactants and products
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Table 4 Input/output fluxes in iDU1327 at selected timepoints without constraint on citric output

Input/output reaction

T1 flux (mmol gDW~"h~")

T2 flux (mmol gDW~"h~") T3 flux (mmol

gDW-"h")
Glucose (DGLCe <==>) —1.2552 —0.4392 0.0
Xylose (XYLe <==>) —0.0718 —0.0647 —0.1936
External phosphate (Ple <==>) —0.1455 0.0 0.0
Internal phosphate (Pl <==>) 0.1339 —0.0019 —0.00005
Biomass 0.1207 (W7 00195 (h~") 0.0006 (h~)
Citric acid (CIT-e <==>) 0.0 0.3159 0.135
Carbon dioxide (CO,e <==>) 3.3671 03311 0.137
Oxygen (0,e <==>) —1.9835 —0.581 —0.3331
Table 5 Input/output fluxes in iDU1327 at selected timepoints with citric output constrained in line with in vivo data
Input/output reaction T1 flux (mmol gDW~"h~") T2 flux (mmol gDW~"h~") T3 flux

(mmol gDW~"h™")

Glucose (DGLCe <==>) —1.2552
Xylose (XYLe <==>) —0.0718
External phosphate (Ple <==>) —0.1455
Internal phosphate (Pl<==>) 0.1339
Biomass 0.1207 (h™"
Citric acid (ClT-e <==>) 0.0

Carbon dioxide (CO,e <==>) 3.3671
Oxygen (0,e <==>) —1.9835

—04392 0.0
—0.0647 —0.1936
00 0.0
—0.0019 —0.00005
0.0195 (h™") 0.0006 (h~")
0.12 0.12
15066 0.2268
—14626 — 04004

performed in a 2 L vessel (Parr Instrument Company,
Moline, IL, US): 100 g milled bagasse was added to the
vessel and mixed with 900 mL 0.4 M NaOH to homoge-
neity. The vessel was heated to 140 °C and maintained
at 140 °C for 45 min, and then cooled on ice until the
temperature dropped to 60 °C. The contents of the ves-
sel were transferred to a fruit press after pre-treatment.
Pre-treated bagasse was pressed to remove the pre-
treatment liquor and rinsed twice in 500 mL acidified
dH,O. The acidified dH,O was prepared by adding 100 pl
concentrated H,SO, to 1.2 L dH,O. After rinsing, pre-
treated bagasse was adjusted to pH 5-6 by the addition
of concentrated H,SO,. The pre-treated bagasse was then
transferred to Weck jars and autoclaved (121 °C 15 min)
followed by storage at 4 °C until use. The pre-treated
bagasse was subjected to enzymatic hydrolysis in 1 L
shake flasks: Pre-treated bagasse was added to the flask at
the equivalent of 50 g dry weight and autoclaved. Under
aseptic conditions, 10 mL 1 M MES buffer pH 5.5 (filter
sterile) and 24.5 mL enzyme solution (filter sterile) were
added, followed by sterile dH,O up to a final volume of
400 mL. Enzyme solution was prepared by mixing 20 g
Cellic CTec3 (Novozymes) with 20 g 25 mM MES buffer
pH 5.5. Flasks were incubated at 50 °C with shaking at
160 rpm for 48 h. After hydrolysis, the hydrolysate slurry
was centrifuged at 4600 rpm for 20 min in a Multifuge

3 SR benchtop centrifuge (Heraeus, Germany). The clear
supernatant was filtered through Whatman glass micro-
fibre filters GF/F (GE Healthcare UK Ltd., UK) using a
vacuum pump and then filter sterilised into a sterile glass
bottle using a Stericap’~ PLUS filter (Merck Millipore).
The filter sterile hydrolysate was stored a