5 research outputs found

    Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping

    Full text link
    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z < 3.5, following an innovative approach known as intensity mapping. Intensity mapping measures the statistics of brightness fluctuations of cumulative line emissions instead of detecting individual galaxies, thus enabling a blind, complete census of the emitting gas. To detect this emission unambiguously, EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM mission uses a cryogenic design to cool the telescope optics to approximately 1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on the sky from the linear regime up to shot noise-dominated scales. The telescope optical elements couple to six {\mu}-Spec spectrometer modules, operating over a 420-540 GHz frequency band with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. A Radio Frequency System-on-Chip (RFSoC) reads out the detectors in the baseline design. The cryogenic telescope and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral windows of low emission in the upper atmosphere. Here, an overview of the mission design and development status since the start of the EXCLAIM project in early 2019 is presented.Comment: SPIE Astronomical Telescopes + Instrumentation. arXiv admin note: substantial text overlap with arXiv:1912.0711

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission

    Cannabinoid receptors and the regulation of bone mass

    No full text
    A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and 2-arachidonoylglycerol and express CB2 cannabinoid receptors. Although CB2 has been implicated in pathological processes in the central nervous system and peripheral tissues, the skeleton appears as the main system physiologically regulated by CB2. CB2-deficient mice show a markedly accelerated age-related bone loss and the CNR2 gene (encoding CB2) in women is associated with low bone mineral density. The activation of CB2 attenuates ovariectomy-induced bone loss in mice by restraining bone resorption and enhancing bone formation. Hence synthetic CB2 ligands, which are stable and orally available, provide a basis for developing novel anti-osteoporotic therapies. Activation of CB1 in sympathetic nerve terminals in bone inhibits norepinephrine release, thus balancing the tonic sympathetic restrain of bone formation. Low levels of CB1 were also reported in osteoclasts. CB1-null mice display a skeletal phenotype that is dependent on the mouse strain, gender and specific mutation of the CB1 encoding gene, CNR1

    EXCLAIM: the EXperiment for cryogenic large-aperture intensity mapping

    No full text
    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) will constrain star formation over cosmic time by carrying out a blind and complete census of redshifted carbon monoxide (CO) and ionized carbon ([CII]) emission in cross-correlation with galaxy survey data in redshift windows from the present to z=3.5 with a fully cryogenic, balloon-borne telescope. EXCLAIM will carry out extragalactic and Galactic surveys in a conventional balloon flight planned for 2023. EXCLAIM will be the first instrument to deploy µ-Spec silicon integrated spectrometers with a spectral resolving power R=512 covering 420-540 GHz. We summarize the design, science goals, and status of EXCLAIM
    corecore