14 research outputs found

    Effects of embryo induction media and pretreatments in isolated microspore culture of hexaploid wheat (Triticum aestivum L. cv. Falat)

    Get PDF
    Isolated microspores of many plants can be induced in vitro to switch their developmental process from the gametophytic to a sporophytic pathway under appropriate conditions and produce haploid plants. This research reports the effects of cold pretreatment with or without either mannitol orchemical + heat and also the effects of 5 embryo induction media (NPB-99, C17, W14, CHB-2 and P2) on embryo production, percentage of total and green plant regeneration in isolated microspore culture of an Iranian spring bread wheat, cultivar ‘Falat’. The results showed that combination of 21 days cold (4°C) with mannitol (0.3 M) produced the highest number of embryos/spike while the combination of cold with chemical + heat produced the lowest number. In the case of total and green plant regeneration, "7 days cold + mannitol" was more superior than other pretreatments. NPB-99, W14 and C17 media produced the highest number of embryos/spike, while CHB-2 medium appeared to be a better medium for green plant regeneration

    Grain-filling rate improves physical grain quality in barley under heat stress conditions during the grain-filling period

    Get PDF
    Heat stress is a primary constraint to Australia's barley production. In addition to impacting grain yield, it adversely affects physical grain quality (weight and plumpness) and market value. The incidence of heat stress during grain filling is rising with global warming. However, breeding for new superior heat-tolerant genotypes has been challenging due to the narrow window of sensitivity, the unpredictable nature of heat stress, and its frequent co-occurrence with drought stress. Greater scientific knowledge regarding traits and mechanisms associated with heat tolerance would help develop more efficient selection methods. Our objective was to assess 157 barley varieties of contrasting genetic backgrounds for various developmental, agro-morphological, and physiological traits to examine the effects of heat stress on physical grain quality. Delayed sowing (i.e., July and August) increased the likelihood of daytime temperatures above 30°C during grain-filling. Supplementary irrigation of field trials ensured a reduced impact of drought stress. Heat tolerance appeared to be the primary factor determining grain plumpness. A wide variation was observed for heat tolerance, particularly among the Australian varieties. Genotypic variation was also observed for grain weight, plumpness, grain growth components, stay-green and stem water-soluble carbohydrates (WSC) content, and mobilisation under normal and delayed sown conditions. Compared to normal sowing, delayed sowing reduced duration of developmental phases, plant height, leaf size, head length, head weight, grain number, plumpness, grain width and thickness, stem WSC content, green leaf area retention, and harvest index (HI), and increased screenings, grain length, grain-filling rate (GFR), WSC mobilisation efficiency (WSCME), and grain protein content. Overall, genotypes with heavier and plumper grains under high temperatures had higher GFR, longer grain-filling duration, longer green leaf area retention, higher WSCME, taller stature, smaller leaf size, greater HI, higher grain weight/plumpness potentials, and earlier flowering. GFR played a significant role in determining barley grain weight and plumpness under heat-stress conditions. Enhancing GFR may provide a new avenue for improving heat tolerance in barley

    A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling

    Get PDF
    Background: Molecular markers and knowledge of traits associated with heat tolerance are likely to provide breeders with a more efficient means of selecting wheat varieties able to maintain grain size after heat waves during early grain filling. Results: A population of 144 doubled haploids derived from a cross between the Australian wheat varieties Drysdale and Waagan was mapped using the wheat Illumina iSelect 9,000 feature single nucleotide polymorphism marker array and used to detect quantitative trait loci for heat tolerance of final single grain weight and related traits. Plants were subjected to a 3 d heat treatment (37 °C/27 °C day/night) in a growth chamber at 10 d after anthesis and trait responses calculated by comparison to untreated control plants. A locus for single grain weight stability was detected on the short arm of chromosome 3B in both winter- and autumn-sown experiments, determining up to 2.5 mg difference in heat-induced single grain weight loss. In one of the experiments, a locus with a weaker effect on grain weight stability was detected on chromosome 6B. Among the traits measured, the rate of flag leaf chlorophyll loss over the course of the heat treatment and reduction in shoot weight due to heat were indicators of loci with significant grain weight tolerance effects, with alleles for grain weight stability also conferring stability of chlorophyll ('stay-green') and shoot weight. Chlorophyll loss during the treatment, requiring only two non-destructive readings to be taken, directly before and after a heat event, may prove convenient for identifying heat tolerant germplasm. These results were consistent with grain filling being limited by assimilate supply from the heat-damaged photosynthetic apparatus, or alternatively, accelerated maturation in the grains that was correlated with leaf senescence responses merely due to common genetic control of senescence responses in the two organs. There was no evidence for a role of mobilized stem reserves (water soluble carbohydrates) in determining grain weight responses. Conclusions: Molecular markers for the 3B or 6B loci, or the facile measurement of chlorophyll loss over the heat treatment, could be used to assist identification of heat tolerant genotypes for breeding.Hamid Shirdelmoghanloo, Julian D. Taylor, Iman Lohraseb, Huwaida Rabie, Chris Brien, Andy Timmins, Peter Martin, Diane E. Mather, Livinus Emebiri and Nicholas C. Collin

    Truncation of grain filling in wheat (Triticum aestivum) triggered by brief heat stress during early grain filling: association with senescence responses and reductions in stem reserves

    No full text
    Short heat waves during grain filling can reduce grain size and consequently yield in wheat (Triticum aestivum L.). Grain weight responses to heat represent the net outcome of reduced photosynthesis, increased mobilisation of stem reserves (water-soluble carbohydrates, WSC) and accelerated senescence in the grain. To compare their relative roles in grain weight responses under heat, these characteristics were monitored in nine wheat genotypes subjected to a brief heat stress at early grain filling (37°C maximum for 3 days at 10 days after anthesis). Compared with the five tolerant varieties, the four susceptible varieties showed greater heat-triggered reductions in final grain weight, grain filling duration, flag leaf chla and chlb content, stem WSC and PSII functionality (Fv/Fm). Despite the potential for reductions in sugar supply to the developing grains, there was little effect of heat on grain filling rate, suggesting that grain size effects of heat may have instead been driven by premature senescence in the grain. Extreme senescence responses potentially masked stem WSC contributions to grain weight stability. Based on these findings, limiting heat-triggered senescence in the grain may provide an appropriate focus for improving heat tolerance in wheat.Hamid Shirdelmoghanloo, Daniel Cozzolino, Iman Lohraseb and Nicholas C. Collin

    Heat susceptibility of grain filling in wheat (Triticum aestivum L.) linked with rapid chlorophyll loss during a 3-day heat treatment

    No full text
    Brief heat events (1–3 days, >30 °C) commonly reduce wheat (Triticum aestivum L.) grain size and consequently yield. To identify mechanisms of tolerance to such short heat events, 36 wheat genotypes were treated under day/night temperatures of 37 °C/27 °C for 3-days in a growth chamber, at 10 days after anthesis, and a range of developmental, chlorophyll and yield-related traits monitored. The degree of flag leaf chlorophyll loss during the treatment was the variable that showed the highest correlation to grain weight loss (r = 0.63; p < 0.001), identifying chlorophyll stability during this brief period as a potential determinant or indicator of grain weight stability under heat. Variables summarizing the combined during- and post-heat chlorophyll losses showed similar or lower correlations with heat tolerance of grain filling, despite the fact that genotypes varied in their ability to resume normal chlorophyll loss rates after the heat treatment. Additionally, heat tolerance of grain size showed no correlation with grain filling duration or traits relating to utilization of stem carbon reserves under heat stress. Measurement of chlorophyll loss over a forecasted heat wave was thereby identified as a potential basis for developing tools to help breeders select heat tolerant genotypes.Hamid Shirdelmoghanloo, Iman Lohrase, Huwaida S. Rabie Chris Brien, Boris Parent, Nicholas C. Collin

    Truncation of grain filling in wheat (Triticum aestivum) triggered by brief heat stress during early grain filling: Association with senescence responses and reductions in stem reserves

    No full text
    © CSIRO 2016.Short heat waves during grain filling can reduce grain size and consequently yield in wheat (Triticum aestivum L.). Grain weight responses to heat represent the net outcome of reduced photosynthesis, increased mobilisation of stem reserves (water-soluble carbohydrates, WSC) and accelerated senescence in the grain. To compare their relative roles in grain weight responses under heat, these characteristics were monitored in nine wheat genotypes subjected to a brief heat stress at early grain filling (37°C maximum for 3 days at 10 days after anthesis). Compared with the five tolerant varieties, the four susceptible varieties showed greater heat-triggered reductions in final grain weight, grain filling duration, flag leaf chla and chlb content, stem WSC and PSII functionality (Fv/Fm). Despite the potential for reductions in sugar supply to the developing grains, there was little effect of heat on grain filling rate, suggesting that grain size effects of heat may have instead been driven by premature senescence in the grain. Extreme senescence responses potentially masked stem WSC contributions to grain weight stability. Based on these findings, limiting heat-triggered senescence in the grain may provide an appropriate focus for improving heat tolerance in wheat

    Grain-Filling rate improves physical grain quality in barley under heat stress conditions during the Grain-Filling period

    Get PDF
    Heat stress is a primary constraint to Australia's barley production. In addition to impacting grain yield, it adversely affects physical grain quality (weight and plumpness) and market value. The incidence of heat stress during grain filling is rising with global warming. However, breeding for new superior heat-tolerant genotypes has been challenging due to the narrow window of sensitivity, the unpredictable nature of heat stress, and its frequent co-occurrence with drought stress. Greater scientific knowledge regarding traits and mechanisms associated with heat tolerance would help develop more efficient selection methods. Our objective was to assess 157 barley varieties of contrasting genetic backgrounds for various developmental, agro-morphological, and physiological traits to examine the effects of heat stress on physical grain quality. Delayed sowing (i.e., July and August) increased the likelihood of daytime temperatures above 30°C during grain-filling. Supplementary irrigation of field trials ensured a reduced impact of drought stress. Heat tolerance appeared to be the primary factor determining grain plumpness. A wide variation was observed for heat tolerance, particularly among the Australian varieties. Genotypic variation was also observed for grain weight, plumpness, grain growth components, stay-green and stem water-soluble carbohydrates (WSC) content, and mobilisation under normal and delayed sown conditions. Compared to normal sowing, delayed sowing reduced duration of developmental phases, plant height, leaf size, head length, head weight, grain number, plumpness, grain width and thickness, stem WSC content, green leaf area retention, and harvest index (HI), and increased screenings, grain length, grain-filling rate (GFR), WSC mobilisation efficiency (WSCME), and grain protein content. Overall, genotypes with heavier and plumper grains under high temperatures had higher GFR, longer grain-filling duration, longer green leaf area retention, higher WSCME, taller stature, smaller leaf size, greater HI, higher grain weight/plumpness potentials, and earlier flowering. GFR played a significant role in determining barley grain weight and plumpness under heat-stress conditions. Enhancing GFR may provide a new avenue for improving heat tolerance in barley
    corecore