72 research outputs found

    Drosophila eiger Mutants Are Sensitive to Extracellular Pathogens

    Get PDF
    We showed previously that eiger, the Drosophila tumor necrosis factor homolog, contributes to the pathology induced by infection with Salmonella typhimurium. We were curious whether eiger is always detrimental in the context of infection or if it plays a role in fighting some types of microbes. We challenged wild-type and eiger mutant flies with a collection of facultative intracellular and extracellular pathogens, including a fungus and Gram-positive and Gram-negative bacteria. The response of eiger mutants divided these microbes into two groups: eiger mutants are immunocompromised with respect to extracellular pathogens but show no change or reduced sensitivity to facultative intracellular pathogens. Hence, eiger helps fight infections but also can cause pathology. We propose that eiger activates the cellular immune response of the fly to aid clearance of extracellular pathogens. Intracellular pathogens, which can already defeat professional phagocytes, are unaffected by eiger

    When a calorie is not just a calorie : Diet quality and timing as mediators of metabolism and healthy aging

    Get PDF
    Funding Information: We thank Dr. Yih-Woei Fridell of the National Institute on Aging for organizing the meeting, as well as the NIA Division of Aging Biology for their support. We thank Dr. Gino Cortopassi for his edits and suggestions. The figures were created with BioRender.com. The Mihaylova lab is supported in part by the NIA (R00AG054760), Office of the NIH Director (DP2CA271361), the American Federation for Aging Research, the V Foundation, Pew Biomedical Scholar award, and startup funds from the Ohio State University. The Delibegovic lab is funded by the British Heart Foundation, Diabetes UK, BBSRC, NHS Grampian, Tenovus Scotland, and the Development Trust (University of Aberdeen). J.J.R. is supported by NIA PO1AG062817, R21AG064290, and R21AG071156. Research support for J.B. was from NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01DK127800, R01DK113011, R01DK090625, and R01DK050203 and the National Institute on Aging (NIA) grants R01AG065988 and P01AG011412, as well as the University of Chicago Diabetes Research and Training Center grant P30DK020595. This work was supported by NIH grants AG065992 to G.M. and AG068550 to G.M. and S.P. as well as UAB Startup funds 3123226 and 3123227 to G.M. R.S. is supported by NIH grants RF1AG043517, R01AG065985, R01DK123327, R56AG074568, and P01AG031782. Z.C. is primarily funded by The Welch Foundation (AU-1731-20190330) and NIH/NIA (R01AG065984, R56AG063746, RF1AG061901, and R56AG076144). A.C. is supported by NIA grant R01AG065993. W.W.J. is supported by the NIH (R01DC020031). M.S.-H. is supported by NIH R01 R35GM127049, R01 AG045842, and R21 NS122366. The research in the Dixit lab was supported in part by NIH grants AG031797, AG045712, P01AG051459, AR070811, AG076782, AG073969, and AG068863 and Cure Alzheimer's Fund (CAF). A.E.T.-M. is supported by the NIH/NIA (AG075059 and AG058630), NIAMS (AR071133), NHLBI (HL153460), pilot and feasibility funds from the NIDDK-funded UAB Nutrition Obesity Research Center (DK056336) and the NIA-funded UAB Nathan Shock Center (AG050886), and startup funds from UAB. J.A.M. is supported by the Intramural Research Program, NIA, NIH. The Panda lab is supported by the NIH (R01CA236352, R01CA258221, RF1AG068550, and P30CA014195), the Wu Tsai Human Performance Alliance, and the Joe and Clara Tsai Foundation. The Lamming lab is supported in part by the NIA (AG056771, AG062328, AG061635, and AG081482), the NIDDK (DK125859), startup funds from UW-Madison, and the U.S. Department of Veterans Affairs (I01-BX004031), and this work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work does not represent the views of the Department of Veterans Affairs or the United States Government. D.W.L. has received funding from, and is a scientific advisory board member of, Aeovian Pharmaceuticals, which seeks to develop novel, selective mTOR inhibitors for the treatment of various diseases. S.P. is the author of the books The Circadian Code and The Circadian Diabetes Code. Funding Information: We thank Dr. Yih-Woei Fridell of the National Institute on Aging for organizing the meeting, as well as the NIA Division of Aging Biology for their support. We thank Dr. Gino Cortopassi for his edits and suggestions. The figures were created with BioRender.com . The Mihaylova lab is supported in part by the NIA ( R00AG054760 ), Office of the NIH Director ( DP2CA271361 ), the American Federation for Aging Research , the V Foundation , Pew Biomedical Scholar award, and startup funds from the Ohio State University . The Delibegovic lab is funded by the British Heart Foundation , Diabetes UK , BBSRC , NHS Grampian , Tenovus Scotland , and the Development Trust ( University of Aberdeen ). J.J.R. is supported by NIA PO1AG062817 , R21AG064290 , and R21AG071156 . Research support for J.B. was from NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01DK127800 , R01DK113011 , R01DK090625 , and R01DK050203 and the National Institute on Aging (NIA) grants R01AG065988 and P01AG011412 , as well as the University of Chicago Diabetes Research and Training Center grant P30DK020595 . This work was supported by NIH grants AG065992 to G.M. and AG068550 to G.M. and S.P., as well as UAB Startup funds 3123226 and 3123227 to G.M. R.S. is supported by NIH grants RF1AG043517 , R01AG065985 , R01DK123327 , R56AG074568 , and P01AG031782 . Z.C. is primarily funded by The Welch Foundation ( AU-1731-20190330 ) and NIH/NIA ( R01AG065984 , R56AG063746 , RF1AG061901 , and R56AG076144 ). A.C. is supported by NIA grant R01AG065993 . W.W.J. is supported by the NIH ( R01DC020031 ). M.S.-H. is supported by NIH R01 R35GM127049 , R01 AG045842 , and R21 NS122366 . The research in the Dixit lab was supported in part by NIH grants AG031797 , AG045712 , P01AG051459 , AR070811 , AG076782 , AG073969 , and AG068863 and Cure Alzheimer's Fund (CAF). A.E.T.-M. is supported by the NIH/NIA ( AG075059 and AG058630 ), NIAMS ( AR071133 ), NHLBI ( HL153460 ), pilot and feasibility funds from the NIDDK -funded UAB Nutrition Obesity Research Center ( DK056336 ) and the NIA -funded UAB Nathan Shock Center ( AG050886 ), and startup funds from UAB . J.A.M. is supported by the Intramural Research Program, NIA, NIH . The Panda lab is supported by the NIH ( R01CA236352 , R01CA258221 , RF1AG068550 , and P30CA014195 ), the Wu Tsai Human Performance Alliance , and the Joe and Clara Tsai Foundation . The Lamming lab is supported in part by the NIA ( AG056771 , AG062328 , AG061635 , and AG081482 ), the NIDDK ( DK125859 ), startup funds from UW-Madison , and the U.S. Department of Veterans Affairs ( I01-BX004031 ), and this work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work does not represent the views of the Department of Veterans Affairs or the United States Government.Peer reviewedPostprin

    The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila

    Get PDF
    Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection

    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae

    Get PDF
    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniaeThe contribution of specific factors to bacterial virulence is generally investigated through creation of genetic "knockouts" that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (?G) of the 5' end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5' mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5' end of the PLY mRNA that are predicted to alter ?G. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ?G manipulation as a tool in studies of bacterial pathogenesis.National Institutes of Health (www.nih.gov) (R01 AI092743 and R21 AI111020 to A.J.R.). F.E.A. was supported by the Portuguese Foundation for Science and Technology (www.fct.pt) SFRH/BD/33901/2009 and the Luso-American Development Foundation (www.flad.pt). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly

    Get PDF
    Author Posting. © American Society for Cell Biology, 2009. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 20 (2009): 2766-2773, doi:10.1091/mbc.E09-01-0043.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.This work was supported by the American Cancer Society (grant PF0711401 to T. J. Maresca), the National Cancer Institute (grant CA078048-09 to T. J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J. C. Gatlin and grant GM24364 to E. D. Salmon)

    Defence Responses of Arabidopsis thaliana to Infection by Pseudomonas syringae Are Regulated by the Circadian Clock

    Get PDF
    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime

    Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila

    No full text
    SummaryBackgroundStudies in Drosophila have taught us a great deal about how animals regulate the immediate innate immune response, but we still know little about how infections cause pathology. Here, we examine the pathogenesis associated with Mycobacterium marinum infection in the fly. M. marinum is closely related to M. tuberculosis, which causes tuberculosis in people.ResultsA microarray analysis showed that metabolism is profoundly affected in M. marinum-infected flies. A genetic screen identified foxo mutants as slower-dying after infection than wild-type flies. FOXO activity is inhibited by the insulin effector kinase Akt; we show that Akt activation is systemically reduced as a result of M. marinum infection. Finally, we show that flies infected with Mycobacterium marinum undergo a process like wasting: They progressively lose metabolic stores, in the form of fat and glycogen. They also become hyperglycemic. In contrast, foxo mutants exhibit less wasting.ConclusionsIn people, many infections—including tuberculosis—can cause wasting, much as we see in Drosophila. Our study is the first examination of the metabolic consequences of infection in a genetically tractable invertebrate and gives insight into the metabolic consequences of mycobacterial infection, implicating impaired insulin signaling as a key mediator of these events. These results suggest that the fly can be used to study more than the immediate innate immune response to infection; it can also be used to understand the physiological consequences of infection and the immune response
    corecore