3 research outputs found

    How population ageing affects technological innovation in perspective of human capital

    No full text
    Based on panel data collected from 41 countries over the period 2007-2017, this paper analysis how population ageing affects technological innovation through three aspects from the perspective of human capital: the loss of knowledge and talents; reverse force and knowledge spillover. In this paper, the technological innovation index (TII) is calculated by using the factor analysis method. Further with this, a fixed-effects regression model is applied to discover that population exerts a significant positive effect on technological innovation through reverse force, while exerts negative effects on technological innovation through the loss of knowledge and talents and knowledge spillover

    Effects of High Hydrostatic Pressure Pretreatment on the Functional and Structural Properties of Rice Bran Protein Hydrolysates

    No full text
    Rice bran protein (RBP) hydrolysis was conducted after high hydrostatic pressure (HHP) pretreatment. The structural and functional properties of HHP-pretreated rice bran protein hydrolysates (RBPH) were investigated. HHP pretreatments were conducted at 100, 200, and 300 MPa; then, enzymatic hydrolysis at atmospheric pressure was performed using trypsin. An RBPH sample that had not been pretreated by HHP was used as a control. Free sulfhydryl (SH) content, SDS-PAGE profiles, high-performance size exclusion chromatography (HPSEC), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), intrinsic fluorescence spectrum, solubility, and emulsifying and foaming properties were evaluated. Changes in particle size and ζ-potential were monitored. Compared with the control, the results of solubility, the emulsifying activity index (EAI) and the emulsifying stability index (ESI) increased significantly (p < 0.05) at 200 MPa. The content of free SH increased significantly (p < 0.05) at 100 MPa. FTIR spectrum and fluorescence analysis confirmed the changes in the secondary and tertiary structures. The experimental results indicated that the structural and functional properties of HHP-pretreated RBPH improved

    Effects of High Hydrostatic Pressure Pretreatment on the Functional and Structural Properties of Rice Bran Protein Hydrolysates

    No full text
    Rice bran protein (RBP) hydrolysis was conducted after high hydrostatic pressure (HHP) pretreatment. The structural and functional properties of HHP-pretreated rice bran protein hydrolysates (RBPH) were investigated. HHP pretreatments were conducted at 100, 200, and 300 MPa; then, enzymatic hydrolysis at atmospheric pressure was performed using trypsin. An RBPH sample that had not been pretreated by HHP was used as a control. Free sulfhydryl (SH) content, SDS-PAGE profiles, high-performance size exclusion chromatography (HPSEC), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), intrinsic fluorescence spectrum, solubility, and emulsifying and foaming properties were evaluated. Changes in particle size and ζ-potential were monitored. Compared with the control, the results of solubility, the emulsifying activity index (EAI) and the emulsifying stability index (ESI) increased significantly (p p < 0.05) at 100 MPa. FTIR spectrum and fluorescence analysis confirmed the changes in the secondary and tertiary structures. The experimental results indicated that the structural and functional properties of HHP-pretreated RBPH improved
    corecore