462 research outputs found

    Microwave Absorption of Surface-State Electrons on Liquid 3^3He

    Full text link
    We have investigated the intersubband transitions of surface state electrons (SSE) on liquid 3^3He induced by microwave radiation at temperatures from 1.1 K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the density of 3^3He vapor atoms. This proportionality is explained well by Ando's theory, in which the linewidth is determined by the electron - vapor atom scattering. However, the linewidth is larger than the calculation by a factor of 2.1. This discrepancy strongly suggests that the theory underestimates the electron - vapor atom scattering rate. At lower temperatures, the absorption spectrum splits into several peaks. The multiple peak structure is partly attributed to the spatial inhomogeneity of the static holding electric field perpendicular to the electron sheet.Comment: 15 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Albumin-based hydrogels for regenerative engineering and cell transplantation.

    Get PDF
    Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.EPSRC Isaac Newton Trust Rosetrees Trus

    Decay of Superflow Confined in Thin Torus: A Realization of Tunneling Quantum Fields

    Full text link
    The quantum nucleation of phase slips in neutral superfluids confined in a thin torus is investigated by means of the collective coordinate method. We have devised, with numerical justification, a certain collective coordinate to describe the quantum nucleation process of a phase slip. Considering the quantum fluctuation around the local minimum of the action, we calculate the effective mass of the phase slip. Due to the coherence of the condensate throughout the torus, the effective mass is proportional to the circumference L of the torus, and the decay rate has a strong exponential L-dependence.Comment: 4 pages, 2 figures, REVTe

    Gigantic Maximum of Nanoscale Noncontact Friction

    Get PDF
    We report measurements of noncontact friction between surfaces of NbSe2_{2} and SrTiO3_{3}, and a sharp Pt-Ir tip that is oscillated laterally by a quartz tuning fork cantilever. At 4.2 K, the friction coefficients on both the metallic and insulating materials show a giant maximum at the tip-surface distance of several nanometers. The maximum is strongly correlated with an increase in the spring constant of the cantilever. These features can be understood phenomenologically by a distance-dependent relaxation mechanism with distributed time scales.Comment: 5 pages, 4 figure

    Binding of molecules to DNA and other semiflexible polymers

    Full text link
    A theory is presented for the binding of small molecules such as surfactants to semiflexible polymers. The persistence length is assumed to be large compared to the monomer size but much smaller than the total chain length. Such polymers (e.g. DNA) represent an intermediate case between flexible polymers and stiff, rod-like ones, whose association with small molecules was previously studied. The chains are not flexible enough to actively participate in the self-assembly, yet their fluctuations induce long-range attractive interactions between bound molecules. In cases where the binding significantly affects the local chain stiffness, those interactions lead to a very sharp, cooperative association. This scenario is of relevance to the association of DNA with surfactants and compact proteins such as RecA. External tension exerted on the chain is found to significantly modify the binding by suppressing the fluctuation-induced interaction.Comment: 15 pages, 7 figures, RevTex, the published versio

    Magneto-shear modes and a.c. dissipation in a two-dimensional Wigner crystal

    Full text link
    The a.c. response of an unpinned and finite 2D Wigner crystal to electric fields at an angular frequency ω\omega has been calculated in the dissipative limit, ωτ≪1\omega \tau \ll 1, where τ−1\tau ^{-1} is the scattering rate. For electrons screened by parallel electrodes, in zero magnetic field the long-wavelength excitations are a diffusive longitudinal transmission line mode and a diffusive shear mode. A magnetic field couples these modes together to form two new magneto-shear modes. The dimensionless coupling parameter β=2(ct/cl)∣σxy/σxx∣\beta =2(c_{t}/c_{l})|\sigma_{xy}/\sigma_{xx}| where ctc_{t} and clc_{l} are the speeds of transverse and longitudinal sound in the collisionless limit and σxy\sigma_{xy} and σxx\sigma_{xx} are the tensor components of the magnetoconductivity. For β⩾1\beta \geqslant 1, both the coupled modes contribute to the response of 2D electrons in a Corbino disk measurement of magnetoconductivity. For β≫1\beta \gg 1, the electron crystal rotates rigidly in a magnetic field. In general, both the amplitude and phase of the measured a.c. currents are changed by the shear modulus. In principle, both the magnetoconductivity and the shear modulus can be measured simultaneously.Comment: REVTeX, 7 pp., 4 eps figure

    Bose-Einstein Condensate in Solid Helium

    Full text link
    We present neutron scattering measurements of the atomic momentum distribution, n(k), in solid helium under a pressure p = 41 bars and at temperatures between 80 mK and 500 mK. The aim is to determine whether there is Bose-Einstein condensation (BEC) below the critical temperature, T_c = 200 mK where a superfluid density has been observed. Assuming BEC appears as a macroscopic occupation of the k = 0 state below T_c, we find a condensate fraction of n_0 = (-0.10 \pm 1.20)% at T = 80 mK and n_0 = (0.08\pm0.78)% at T = 120 mK, consistent with zero. The shape of n(k) also does not change on crossing T_c within measurement precision.Comment: 4 pages, 5 figures (in press

    Study of Kosterlitz-Thouless transition of Bose systems governed by a random potential using quantum Monte Carlo simulations

    Full text link
    We perform quantum Monte Carlo simulations to study the 2D hard-core Bose-Hubbard model in a random potential. Our motivation is to investigate the effects of randomness on the Kosterlitz--Thouless (KT) transition. The chemical potential is assumed to be random, by site, with a Gaussian distribution. The KT transition is confirmed by a finite-size analysis of the superfluid density and the power-law decay of the correlation function. By varying the variance of the Gaussian distribution, we find that the transition temperature decreases as the variance increases. We obtain the phase diagram showing the superfluid and disordered phases, and estimate the quantum critical point (QCP). Our results on the ground state reveal the existence of the Bose glass phase. Finally, we discuss what the value of the variance at the QCP indicates from the viewpoint of percolation.Comment: 7 pages, 9 figures, accepted for publication in JPS
    • …
    corecore