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ABSTRACT

Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable 

biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels 

readily in defined conditions. This versatility, together with its inexpensiveness and 

biocompatibility, makes albumin an attractive biomaterial for biomedical research and 

therapeutics. So far, clinical research in albumin has centred mainly on its use as a carrier 

molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In 

contrast, research in albumin-based hydrogels is less established albeit growing in interest 

over recent years. In this mini-review, we report current literature and critically discuss the 

synthesis, mechanical properties, biological effects and uses, biodegradability and cost of 

albumin hydrogels as a xeno-free, customisable and transplantable construct for tissue 

engineering and regenerative medicine.

Keywords: serum albumin, hydrogel, crosslinking, stem cells, tissue engineering, 

regenerative medicine
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INTRODUCTION

Albumin, an endogenous, non-glycosylated protein, is produced predominantly in the liver by 

hepatocytes and secreted into blood as a major constituent of plasma. It is comprised of 585 

amino acids, has a molecular weight of 66.4 kDa, and an iso-electric point of pH 4.7 (Vlasova 

& Saletsky, 2009). In vivo, albumin is a stable molecule because it is poorly metabolised, 

poorly immunogenic and poorly filtered in the renal glomerulus (Lee & Youn, 2016).  As a 

result, albumin has a physiological half-life of approximately 19 days, during which it 

maintains oncotic pressure in the circulatory system, acts as a weak buffer, and stabilises 

other important proteins, hormones, metal ions, nanoparticles and drugs in vitro and in vivo. 

Albumin has two significant non-covalent binding sites that exogenous substances attach to; 

Binding Site 1 and Binding Site 2. In so doing, the half-life and treatment efficacy of drugs 

such as antibiotics, anti-inflammatories and synthetic insulin preparations are increased 

(Kratz, 2008; Lee & Youn, 2016). Other important biological characteristics of albumin 

include its accumulation at sites of inflammation from leaky capillaries and its active uptake 

by cancer cells, making it useful for targeting disease in molecular cancer therapeutics 

(Elsadek & Kratz, 2012; Lee & Youn, 2016).  

Despite extensive research in albumin as a molecule for drug therapy, its use as a hydrogel in 

biomedical research is comparatively under-studied. However, interest is steadily growing 

because albumin hydrogels offer a non-synthetic, xeno-free and biocompatible biomaterial 

for the fields of tissue engineering and regenerative medicine which increasingly employ 

three-dimensional (3D) cell cultures, tissue scaffolds and constructs for disease modelling 

and transplantation. In addition, its inertness, stability, ability to gel at low concentrations and 

the possibility of deriving patient specific albumin, make albumin hydrogels an attractive 

option. This review summarises work on albumin hydrogels over the past decade and 

Page 2 of 30

John Wiley & Sons

Biotechnology & Bioengineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 3 of 24

specifically discusses the (i) synthesis, (ii) mechanical properties, (iii) biological effects and 

uses, (iv) biodegradability and (v) cost.

For this review, the adopted definition of a hydrogel is: a two- or multi-component system, 

consisting of a 3D network of polymeric chains, where water occupies the spaces between 

those polymeric chains (Ahmed, 2015). Articles reporting hydrogels formed by other 

polymers but functionalised with albumin have been excluded in this review. A brief 

overview of the properties of albumin-based hydrogels is provided in Table 1.

SYNTHESIS OF ALBUMIN HYDROGELS

pH-induced albumin hydrogels. 

Albumin exists either as monomers or oligomers depending on its environment (Barone et al., 

1995; Molodenskiy et al., 2017). By manipulating pH, albumin in solution polymerises and 

forms a clear hydrogel. Baler, Michael, Szleifer, and Ameer (2014) reported that by lowering 

the solution pH to 3.5 followed by 37°C incubation, bovine serum albumin (BSA) changes 

structure from the "N-form" to the "F-form" isomer which then self-assembles into a 

hydrogel network by hydrophobic interactions and counter ion binding (Figure 1). Crucially, 

neutralisation of the acid-induced hydrogels by leaching in Dulbecco's Modified Eagle 

Medium (DMEM) was required before acellular hydrogels could be transplanted into murine 

models. This implies it is not feasible to encapsulate pH-sensitive cells in the bulk of the gel 

using this method of gelation. However, it does not preclude acid-induced albumin hydrogels 

from being functionalised and used as a scaffold after pH neutralisation is achieved. Also 

noteworthy is that BSA is only 76% similar in amino acid sequence compared to human 

serum albumin (HSA) (Carter & Ho, 1994; X. M. He & Carter, 1992) therefore gelation 

behaviour and properties of HSA hydrogels may differ even if gelation methods and 

conditions are standardised.  
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Recently, both pH and temperature-dependent gelation behaviour in BSA and HSA have 

been extensively studied by Arabi et al., 2018. This led to the physical characterisation of 

both BSA and HSA hydrogels through several phase diagrams (Figure 2). Interestingly, the 

authors established that gelation of BSA and HSA can occur over a wide pH range and 

temperatures (pH 1.0 - 4.3 and pH > 10.6 at 37 ºC or pH 7.0 - 7.2 at 50 - 65 ºC). However, 

the gelling mechanism of BSA and HSA, or the biocompatibility of alkali-induced albumin 

hydrogels were not investigated. It is highly likely molecular and structural differences in 

albumin isomers exist across the different gelling conditions, and this will in turn affect the 

properties of the albumin hydrogel such as available binding sites. Further research in this 

area can help in the conjugation or functionalisation of albumin hydrogels with target 

proteins in the future.  

In contrast to acidic pH, albumin transitions from the N-form isomer to the B-form (basic 

form) around pH 8 then to the A-form (aged form) around pH 10 and above (Amiri, Jankeje, 

& Albani, 2010; J. Chen et al., 2019; Leggio, Galantini, & Pavel, 2008). The A form isomers 

then form aggregates and the exact mechanism of gelation remains poorly understood (J. 

Chen et al., 2019). Recently, J. Chen et al., 2019 reported that alkali-induced BSA hydrogels 

formed at pH 12 and 37 ºC incubation were mechanically stable, and exhibited self-healing 

and auto-fluorescence properties. However, similar to acid-induced albumin hydrogels, 

alkali-induced hydrogels required neutralisation with DMEM to pH 7.4. Biocompatibility of 

the neutralised hydrogel was subsequently demonstrated by cell culture of human lung 

carcinoma cells (A549 cell line) over a 48-hour period. Unfortunately, no quantitative data on 

cell experiments were provided and the long term (weeks to months) in vivo stability of these 

alkali-induced hydrogels remains unknown. 

Thermally-induced albumin hydrogels
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Heat induced gelation is a more commonly reported method to obtain stable albumin 

hydrogels (Amdursky et al., 2018; Arabi et al., 2018; Baler et al., 2014; Nandlall et al., 2010; 

Peng et al., 2016). However, one important consideration is that applying high heat will cause 

the denaturation of albumin since its structure starts to unfold at temperatures above 65 ºC 

(Borzova et al., 2016). The higher the temperature above 65 ºC, the greater the degree of 

unfolding and aggregation. This denaturation temperature of albumin can also be lowered by 

changes in pH and the addition of ions or redox reagents e.g. magnesium (Haque & Aryana, 

2002) and urea (Gonzalez-Jimenez & Cortijo, 2002) respectively. Another important 

consideration is that with the denaturation and aggregation of albumin, its binding sites for 

ions, drugs and proteins can change, together with other physical properties of the albumin 

hydrogels such as turbidity.  

pH-neutral, thermally-induced albumin hydrogels increase in turbidity as temperature, 

albumin concentration and ionic content increase due to extensive denaturation of albumin 

molecules (Amdursky et al., 2018; Murata, Tani, Higasa, Kitabatake, & Doi, 1993). This is in 

stark contrast to pH-induced albumin hydrogels which still have a clear to translucent 

appearance at higher albumin concentrations when incubated at room temperature to 37 ºC, 

even though denaturation still occurs. Baler et al., 2014 have demonstrated that thermally 

induced BSA hydrogels have larger pore sizes, a higher Young's modulus and lower 

degradability compared to pH-induced BSA hydrogels, however these properties vary with 

albumin concentration and more extensive characterisation over a wider range of gelation 

conditions is needed, particularly in HSA. The tuneable characteristics of thermally-induced 

albumin hydrogels indeed make it seem appealing, but opaque or turbid hydrogels have 

limited usefulness in biological studies since it precludes normal brightfield microscopy. 

However, this may be overcome by the addition of sodium chloride. To reduce the turbidity 

of thermally-induced albumin hydrogel, Murata et al., 1993 reported that the addition of 
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sodium chloride into BSA solution resulted in transparent gels within a specific concentration 

range. Studies to determine if this effect is reproducible in HSA are still pending.

Interestingly, apart from applying high heat, it has been recently demonstrated that albumin 

hydrogels could be formed by salt induced cold gelation (Ribeiro et al., 2016). With the 

addition of calcium chloride and DL-Dithiothreitol to a BSA/HSA mix and heating at 60 ºC 

for 30 minutes, followed by cooling and freezing at -20 ºC for two days, an albumin hydrogel 

can be obtained. The resulting hydrogel was freeze-dried to create a porous scaffold which 

was later shown to be biocompatible. 

In summary, current methods to derive pH-induced or thermally induced hydrogels have 

shown that the (i) albumin concentration, (ii) the presence of ions or redox reagents, (iii) the 

range of pH, (iv) heating temperature, and (iv) duration of heating, are all crucial factors for 

gelation. These in turn affect the final properties of the albumin hydrogel.

Chemically crosslinked albumin hydrogels

Chemical crosslinking is the most reported method to derive albumin hydrogels (Abbate, 

Kong, & Bansal, 2012; Bai et al., 2019; Feldman & McCauley, 2018; Gallego, Junquera, 

Meana, Alvarez-Viejo, & Fresno, 2010; Gallego, Junquera, Meana, Garcia, & Garcia, 2010; 

P. He, Jean-Francois, & Fortier, 2012; Hirose, Tachibana, & Tanabe, 2010; Kim et al., 2015; 

Li et al., 2014; Lisman, Butruk, Wasiak, & Ciach, 2014; Ma et al., 2016; Manokruang & Lee, 

2013; Noteborn, Gao, Jesse, Kros, & Kieltyka, 2017; Oss-Ronen & Seliktar, 2011; Overby & 

Feldman, 2018; Raja, Thiruselvi, Mandal, & Gnanamani, 2015; Scholz et al., 2010; 

Upadhyay & Rao, 2019; Zhao et al., 2019; Zhou et al., 2018). Synthetic polymers such as 

Polyethylene Glycol (PEG) are activated to form PEG-albumin complexes (e.g. with 4-

nitrophenyl-chloroformate), or alternatively functional groups may be added to the ends of 

the PEG molecule to target specific chemical compositions or binding sites of other target 
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proteins for conjugation. For example, the methoxy-polyethylene glycol group at the ends of 

each PEG- succinimidyl propionate (PEG-SPA), PEG-succinimidyl succinate (SS) and PEG-

succinimidyl glutarate (PEG-SG) molecule, are able to exchange a hydroxyl group with a N-

hydroxysuccinimide (NHS) group. These functionalised PEG-NHS molecules can then form 

amide linkages with amino acids such as lysine from target proteins. 

The configuration of the PEG backbone and the number of hydrolytically cleaved functional 

groups determine the overall stability of PEG-NHS molecules. As such, PEG-SS and PEG-

SG molecules are more easily degraded compared to PEG-SPA since these molecules contain 

esters in their backbone which are affected by hydrolysis. In vivo once hydrolysed, PEG 

chains are cleared mainly through the kidneys, and to a lesser extent, the liver and gut 

(Baumann et al., 2019). This can be taken advantage of to suit the rate of biodegradability 

desired. Apart from functionalisation with NHS groups, PEG can also be functionalised with 

maleimide (PEG-MAL) or diacrylate (PEG-DA). The -MAL end group crosslinks thiol 

groups that are present in amino acids such as cysteine and thiolated target proteins such as 

thiolated albumin. PEG-DA is activated by exposure to ultraviolet light and photo-

crosslinking ensues. However, intracellular damage from reactive oxygen species (ROS) and 

cytotoxicity may result from prolonged or high intensity UV exposure (de Jager, Cockrell, & 

Du Plessis, 2017) if cells were encapsulated in bulk during gelation. This can be 

circumvented by creating a porous scaffold through sacrificial moulding then seeding cells 

within it (Shirahama et al., 2016). Other less commonly used agents to crosslink albumin 

include glutaraldehyde (Gallego, Junquera, Meana, Alvarez-Viejo, et al., 2010; Gallego, 

Junquera, Meana, Garcia, et al., 2010; Ma et al., 2016; Upadhyay & Rao, 2019; Zhao et al., 

2019), glutathione (Bai et al., 2019; Raja et al., 2015), dithiothreitol (Hirose et al., 2010), 

transglutaminase (Li et al., 2014),  polyaminourethane (Manokruang & Lee, 2013), oxidised 

dextran (Lisman et al., 2014) and N,N-methylenebisacrylamide (MBA) (Abbate et al., 2012).  
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With PEG being the most common polymer used in the crosslinking of albumin, perhaps the 

greatest concern in the clinical application of PEG-albumin hydrogels is immunogenicity. 

Although it is well established that albumin itself is poorly immunogenic, there is growing 

evidence that PEG is not bio-inert. Clinical trials involving PEGylated drugs have 

demonstrated that the occurrence of PEG-specific IgM and IgG antibodies in patients is not 

infrequent and it can result in reduced drug efficacy, mild to moderate immune reactions and 

adverse outcomes (Zhang, Sun, Liu, & Jiang, 2016). This considered, other methods of 

albumin gelation and conjugation should be explored.  

MECHANICAL PROPERTIES

Uniaxial compression and tension, and indentation have been employed to measure the 

Young’s modulus of albumin hydrogels (Amdursky et al., 2018; Baler et al., 2014; Fleischer 

et al., 2014). The main concern when testing compliant materials such as hydrogels is 

separating inelastic (time-dependent) and elastic characteristics since the Young’s modulus 

should be independent of time. In this context, the load and displacement measuring systems 

and the inertia of the testing setup are important. Often hydrogels require a customised set-up 

suitable for low load testing rather than conventional mechanical testing set-ups. Nano- and 

micro-indenters on the other hand have accurate load and displacement measuring systems, 

but inevitably indentation is likely to generate regions of high local stress, which make 

inelastic deformation even more likely. Furthermore, unless a relatively large indenter tip is 

used, indentation may not be suitable for property measurement since it cannot sample 

volumes large enough to be representative. 

Baler et al., 2014 measured the Young’s modulus of pH- and thermally-induced BSA 

hydrogels using a custom built flat-ended cylindrical indenter with a radius of 0.44 mm. For a 

17 wt% pH-induced hydrogel, the values were found in the range of 3 to 35 kPa for pH 
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between 3 and 4, with the highest value obtained at pH 3.5. No solid gels were formed for pH 

below 3 and above 4. The 20 wt% pH- and thermally-induced hydrogels gave values of about 

46 and 67 kPa respectively. Fleischer et al., 2014 measured the Young’s modulus of 

electrospun 10% (w/v) BSA scaffolds under uniaxial tension. Scaffolds were submerged in 

PBS for 15 min prior to testing. The Young’s modulus values were 1.22 ± 0.07 and 0.43 ± 

0.07 MPa respectively for uniaxially-aligned and randomly-oriented albumin scaffolds, with 

ribbon-like fibres. No information was provided on the loading direction. It is assumed that 

they measured the through-thickness Young’s modulus of the scaffolds and that the albumin 

fibres in both scaffolds were lying in-plane. The randomly-oriented fibrous scaffolds were 

reported to have a larger pore size and slightly wider albumin fibres. No information was 

provided on the scaffold porosity and fibre density so it is difficult to make any comparisons. 

Amdursky et al., 2018 measured the Young’s modulus of 3-9 wt% BSA hydrogels under 

tension. The hydrogels were not submerged in solution during testing. The Young’s modulus 

was found to increase from ~5 to 17 kPa with increasing albumin concentration. Under 

confined compression, the values varied from ~0.2 to 4.4 MPa for 3-9 wt% BSA hydrogels. 

In all of the above studies, it would have been useful if the authors provided an expanded 

view of the low strain region used to measure the Young’s modulus. 

Rheology tests have also been used to characterise the viscoelastic behaviour of BSA 

hydrogels. Baler et al., 2014 investigated the gelation kinetics of both pH- and thermally-

induced BSA hydrogels at 37 and 80 °C respectively, with a 0.5% oscillatory strain. pH-

induced BSA hydrogels (pH 3.5) formed slowly (~330-2300 s) compared to thermally-

induced BSA hydrogels (~20-65 s). They exhibited a lower storage modulus (G´) compared 

to thermally-induced hydrogels with the same BSA concentration. The G´ and loss modulus 

(G´´) values for both 16 and 20 wt% thermally-induced BSA hydrogels reached a plateau at 

around 120 and 60 kPa respectively after 30-50 s. Amdursky et al., 2018 obtained G´~ 13 kPa 
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and G´´~ 4 kPa for a 9 wt% thermally-induced BSA hydrogel (10 Hz, 80°C and 0.5% 

oscillatory strain). 

There is limited data on the strength and failure strains of albumin hydrogels (Amdursky et 

al., 2018; Zhou et al., 2018). Zhou et al., 2018 reported tensile strengths of about 40 kPa for 

both a 20 wt% HSA hydrogel and a 0.5% Bioglass-activated/HSA composite hydrogel. 

Amdursky et al., 2018 measured tensile failure strains between 35-100% for 3-9 wt% BSA 

hydrogels. The stress-strain curves suggest that increasing BSA concentration does not have a 

strong effect on the measured fracture strengths, which are a few kPa, whereas failure strains 

tend to decrease markedly reducing the toughness of the hydrogels.

BIOLOGICAL EFFECTS AND USES

Albumin is confined mainly to the vascular and interstitial space within the human body. It 

binds to nine different cell surface receptors and is relatively inert to many cell types (Merlot, 

Kalinowski, & Richardson, 2014). Several binding sites on albumin allow the attachment of 

important molecules, proteins and ions which in turn provides stability in solution. It is 

therefore used commonly in cell culture media as a carrier protein, however albumin alone in 

its normal form (N-form) has rarely been used as a culture matrix because of limited cell 

attachment in two dimensional cultures (Hirose et al., 2010). Several groups have overcome 

this problem successfully by functionalising albumin hydrogels with fibronectin (Amdursky 

et al., 2018), laminin (Fleischer et al., 2014) or culturing cells in 3D hydrogels with 

crosslinked or denatured albumin. Below, studies grouped by experimental cell or tissue 

types are discussed.

Bone and Cartilage Regeneration

Two separate studies (Gallego, Junquera, Meana, Alvarez-Viejo, et al., 2010; Gallego, 

Junquera, Meana, Garcia, et al., 2010) isolated human osteoblasts from teeth (third 
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mandibular molars) and cultured these cells in HSA enriched media. An albumin-rich gel was 

then created from patient derived serum by first crosslinking with glutaraldehyde. Further 

freezing at -70 ºC overnight and dehydration with ethanol created a porous scaffold which 

was later seeded with osteoblasts. These constructs were transplanted beneath the skin of 

immuno-deficient mice. Osteoblast proliferation was reported both in vitro and in vivo. After 

75-150 days, analysis of transplanted constructs demonstrated the deposition of human 

vimentin, osteocalcin, calcium and phosphate matrix along with bone within the pores of the 

scaffold. Here the significance of vimentin positivity is unclear. Vimentin inhibits 

osteoblastic differentiation, but the deposition of bone matrix by mature osteoblasts was 

reported. It is also important to note that the albumin-rich scaffolds were derived from human 

serum which may contain other proteins and growth factors that were not removed by the 

gelation and drying process. Therefore, it is not possible to attribute any biological effects 

observed in this study solely to albumin although there is evidence in literature that albumin 

itself encourages osteoblast proliferation (Ishida & Yamaguchi, 2004). 

Apart from bone-forming cells (osteoblasts), chondrocytes derived from human articular 

cartilage were able to proliferate in a PEGylated albumin hydrogel supplemented with 

hyaluronic acid (Scholz et al., 2010). It was reported that cells cultured within this hydrogel 

had a characteristic gene signature for aggrecan, collagen type I and type II. Unfortunately 

with the presence of three polymers in the hydrogel, it is not discernible what the actual 

effects of albumin are. Nonetheless it serves its function as a biocompatible scaffold.

Interestingly, Li et al., 2014 reported that freeze-drying an albumin gel crosslinked with 

transglutaminase produced a scaffold with physical and mechanical properties similar to 

collagen scaffolds. More significantly, the authors were able to successfully differentiate 

human mesenchymal stem cells (MSCs) seeded in these scaffolds into osteoblasts, 
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demonstrating the potential of such a scaffold for bone tissue engineering and regenerative 

medicine. However, one important limitation is that these scaffolds were made with BSA and 

further research is needed to determine if this is reproducible with HSA hydrogels for future 

clinical applications.

Skin Regeneration and Wound Healing

Feldman & McCauley, 2018 reported that a species-specific, albumin hydrogel scaffold could 

accelerate the epithelialisation rate of full thickness wounds after two weeks. This effect was 

further augmented with the introduction of MSCs expressing TGFβ3 in the bulk of the 

scaffold. These experiments were conducted using albumin derived from rabbits and 

transplanted into immuno-competent rabbits, however no significant differences were noticed 

when comparing the overall rate of wound healing with control groups. Admittedly, the study 

was also underpowered to detect an effect. Zhou et al., 2018 created a composite albumin 

hydrogel by crosslinking HSA with PEG-SS2. Bioglass was added to increase the gelation 

time of the composite gel and to allow the delivery of calcium and silicon ions at the site of 

injury after injection of the acellular hydrogel. The authors demonstrated wound healing, 

measured by epidermal thickness, dermal thickness, and angiogenesis, were significantly 

increased by acellular HSA-PEG-SS2 hydrogels, but the greatest effect was observed in the 

composite hydrogel with Bioglass (HSA-PEG-SS2-Bioglass) at 14 days. It is noteworthy that 

an immuno-deficient mouse model was used (BALB/c nude). As such, the effect of the HSA-

PEG-SH2-Bioglass hydrogel in the presence of a competent immune system is not known and 

this may conceal immune-mediated reactions or detrimental effects on wound healing in 

normal test subjects.  

Apart from human MSCs, human skin fibroblasts (BJ-5ta) (Ribeiro et al., 2016) and mouse 

adipose fibroblasts (L929) (Hirose et al., 2010; Lisman et al., 2014) have also been cultured 
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successfully on albumin hydrogels but these were used only in the context of cytotoxicity 

testing. 

Lung & Breast

Cell survival studies have been performed successfully with lung cancer cell lines A549 

(Bodenberger, Kubiczek, & Rosenau, 2017; Jun Chen et al., 2016; Ma et al., 2016), and 

breast cancer cell lines MCF7 (Bodenberger et al., 2017) and ZR75-1 (Nandlall et al., 2010). 

However, the use of albumin hydrogels in lung and breast tissue engineering as well as 

regenerative medicine is limited. 

Heart

Albumin hydrogels have been reported to enhance the functionality of neonatal rat ventricular 

cardiomyocytes (NVRM) and cardiomyocytes derived from human induced pluripotent stem 

cells (hiPSC-CMs) (Humphrey et al., 2017). Humphrey et al., 2017 reported albumin 

hydrogels had a positive effect on calcium handling (time to peak and rate of decay) in 

NVRM and hiPSC-CMs. The authors used glass as a negative control, however a positive 

control with an alternative matrix was missing. It is therefore not possible to discern what the 

effects of albumin hydrogels are in comparison to physiological standards. Amdursky et al., 

2018 reported that NVRM cultured on a pH-induced albumin hydrogel and functionalised 

with fibronectin, produced NVRM with gene profiles (Myh7, Myh6, Myl2, Actn2, Tnnt2, 

Acta2, SERCA2, Atp2a2, Slc8a1, Pln and Ryr2) closely resembling that of freshly isolated 

cardiomyocytes, whilst NVRMs cultured on glass alone began to de-differentiate. 

Furthermore, co-culture of NVRM with rat endothelial cells, smooth muscle cells and 

fibroblasts on the surface of the hydrogel resulted in contractile cardiac tissue which could be 

paced by external electrical stimulation (Figure 3). Interestingly, neutralisation of the acidic 
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albumin hydrogel by leaching with neutral-pH media was not performed and the effect of the 

albumin hydrogel acidity (pH 2) on NVRM is not known.

Fleischer et al., 2014 created an electrospun scaffold from albumin hydrogels crosslinked by 

trifluoroethanol (TFE) and β-mercaptoethanol (BME). Interestingly, the authors reported that 

NVRM proliferated, self-organised and formed cardiac tissue in these albumin scaffolds 

when functionalised with laminin. Furthermore, indices of cardiac function; rate of 

contractility and amplitude, were significantly enhanced compared to scaffolds made from 

polycaprolactone (PCL). However, it is important to note that the laminin was applied by 

coating the albumin scaffolds with fetal bovine serum (FBS) instead of pure laminin alone. 

This suggests other soluble proteins and growth factors in FBS could also be present on the 

fibres and not just serum laminin alone. Also, the control group with PCL scaffolds were 

coated with fibronectin instead of FBS so a fair comparison cannot be made.

Liver

There is limited research on albumin hydrogels in liver tissue engineering and regenerative 

medicine. Zhao et al., 2019 created a ruthenium-albumin hydrogel crosslinked by 

glutaraldehyde and reported cell survival of both liver cancer cell line HepG2 and normal 

human fetal hepatocyte cell line L02. The survival rates of HepG2 cells decreased with 

increasing concentrations of ruthenium but this was an intended effect.

Nerves

Albumin scaffolds promoting the proliferation, differentiation and branching of human iPSC 

derived neural stem cells (hiPSC-NSC) was reported by (Hsu, Serio, Amdursky, Besnard, & 

Stevens, 2018). An electrospun scaffold was created from albumin hydrogels crosslinked by 

TFE and BME, then coated with hemin, laminin and basic fibroblast growth factor (FGF2). 
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hiPSC-NSCs seeded on uncoated albumin scaffolds were observed to have significantly high 

death rates. Oddly, the cell death rates on both coated and uncoated albumin scaffolds were 

similar. In contrast, cell death rates on uncoated glass (negative control) were significantly 

lower. More Ki67 positive cells were also observed on uncoated glass than on coated 

scaffolds although there were more β3-tubulin positive cells in coated scaffolds. Neurite 

branching was only observed to be more significant than the negative controls when an 

electrical stimulus was applied. Given the mixed results, further investigation is needed in 

this area.

Drug delivery

The role of albumin molecules in drug delivery is well established, however research in 

albumin hydrogels for controlled drug release and delivery is still growing. Kim et al., 2015 

utilised a PEG-HSA hydrogel loaded with an apoptotic TRAIL protein to successfully induce 

cancer cell death and reduce tumour size in a murine model injected with a pancreatic cancer 

cell line (Mia Paca-2). Successful controlled drug release was also demonstrated using a 

composite hydrogel (Dextran-HSA-PEG) loaded with anti-cancer drug doxorubicin to 

eliminate breast cancer cells (MCF-7) in vitro (Noteborn et al., 2017). More recently, Zhao et 

al., 2019 demonstrated the ability of albumin hydrogels to selectively deliver metal ions to 

liver cancer cells (HepG2) for anti-cancer therapy or imaging.

BIODEGRADABILITY

The biodegradability of albumin hydrogels depends on the way the albumin hydrogel is 

synthesised. Baler et al., 2014 demonstrated that albumin hydrogels formed by electrostatic 

self-assembly in acidic pH were easily degradable in vitro and in vivo, whereas thermally-

induced albumin hydrogels were resistant to degradation. In vitro, an 8M solution of urea 

degraded acid-induced albumin hydrogels within 17 hours, whereas in vivo degradation 
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occurred in an immuno-competent rat model (Sprague-Dawley) over four weeks with little 

evidence of inflammation and the site of transplantation. In contrast, thermally-induced 

albumin hydrogels were resistant to chemical and physiological degradation. Thermally-

induced BSA hydrogels were still intact four weeks post-transplantation and a fibrous capsule 

around the scaffold was noted. Interestingly, local inflammation was noted when untreated 

BSA was injected but this resolved with time. 

Albumin hydrogels derived by glutaraldehyde-induced crosslinking seem to exhibit poor 

biodegradability and local immunogenicity. (Gallego, Junquera, Meana, Alvarez-Viejo, et al., 

2010) reported that glutaraldehyde-crosslinked HSA hydrogels, when transplanted in an 

immuno-deficient mouse model, remained partially degraded at 150 days. Calcification of the 

scaffolds and injury to overlying skin were also noted. Ma et al., 2016 reported 

hyperkeratosis in all mice after the injection of glutaraldehyde crosslinked BSA hydrogels but 

complete degradation after two months. In one out of two test subjects, inflammation was 

noted in the surrounding skin and a fibrous capsule around the BSA hydrogel was 

developing. The strain of mice used were immuno-deficient. The crosslinking process could 

account for the skin reactions since other methods of gelation e.g. electrostatic self-assembly, 

did not produce the same effect. Difference in degradation times could also be explained by 

the inherent differences between HSA and BSA although further studies are needed to 

confirm this.

BSA hydrogels synthesised by glutathione-mediated oxidative refolding (Raja et al., 2015) 

produce less of an immunogenic response compared to BSA hydrogels synthesised by 

glutaraldehyde-induced crosslinking. When transplanted into an immuno-competent rat 

model (Wistar), these hydrogels did not precipitate skin reactions. No obvious signs of 

inflammation were noted but the formation of a fibrous capsule around the hydrogel persisted 
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in a dose dependent manner i.e. higher albumin concentrations were associated with thicker 

fibrous capsules. Degradation times also increased with increasing albumin concentrations 

e.g. 15-20 days for 300 µM gels and 30-40 days for 600 µM gels. It would be both important 

and useful for future studies to determine if immuno-competency in animal models 

accelerates the rate of hydrogel degradation.  

PEG-albumin hydrogels generally have a more predictable degradation period of 

approximately 2 to 4 weeks with no local side effects. A HSA-SH/PEG-MAL hydrogel was 

reduced to 28% of its initial weight after 21 days in an immuno-deficient mouse model 

(Figure 4) (Kim et al., 2015). Interestingly, only one study to date has created albumin 

hydrogels derived from species-specific serum for in vivo experimentation. Feldman & 

McCauley, 2018 created an albumin-(PEGSG2)-TGFβ3, hydrogel scaffold from rabbit 

albumin and transplanted these into immuno-competent rabbits. The degradation time was 

reported to be 2 weeks with no immunogenic complications observed. In contrast to the 

above, hydrogel created from the conjugation of BSA with PEG-derived poly-amino-

urethane showed poor degradability after 3 weeks in immuno-competent rats (Manokruang & 

Lee, 2013). Unfortunately, local effects in the surrounding skin were not assessed.

COST

Animal-derived albumin is inexpensive; however all hydrogels should ideally be xeno-free 

for clinical utility. Human albumin is considerably more expensive than animal-derived 

albumin but relatively cheaper compared to other substrates used in regenerative medicine. 

For example, Matrigel costs approximately £1933.33/g (Sigma) and rat tail collagen-1 costs 

£4810.00/g (Sigma); whereas human albumin costs £20.30/g (Sigma). Other preparations of 

albumin such as 20% human albumin solution may be procured at cheaper and larger 

volumes, e.g. 20 g for £54 (Octapharma Ltd).
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Apart from albumin, additional costs may also be incurred by the reagents used to induce 

gelation of albumin and chemically crosslink target proteins. For example, hydrogel 

synthesised by glutaraldehyde (£3.60/mL for 70% glutaraldehyde, Sigma) is considerably 

cheaper compared to functionalised PEG (£108.12/g for 4-arm 10K PEG-SG, Creative 

PEGWorks). However as discussed above, albumin hydrogels crosslinked by glutaraldehyde 

or glutathione have a propensity to be immunogenic. As cell attachment to N-form albumin is 

generally poor and conjugation of target proteins with PEG costly and laborious, better 

methods of functionalising HSA hydrogels are needed. 

CONCLUSION

There is a broad scope for further exploitation of albumin hydrogels in regenerative medicine. 

In the study of the lung, the creation of macroporous albumin scaffolds from hydrogels could 

be useful in engineering lung parenchyma. Pore size and thickness could be tuned to 

recapitulate the alveolar space onto which lung stem cells and auxiliary cell types could be 

seeded. This offers an alternative to decellularised animal scaffolds and lung organoid 

biology could be studied in xeno-free conditions. In regenerative cardiology, the growth of 

contractile heart tissue on HSA has not yet been demonstrated but remains an attractive area 

of research to pursue. Xeno-free, injectable HSA hydrogels could then be a viable method of 

delivering cardiac stem cells or cardiomyocytes directly into injured myocardium. In 

regenerative hepatology, a similar approach to cell or tissue delivery could be adopted to 

transplant hepatic stem cells, hepatocytes or organoids in liver failure. However albumin, an 

important marker of synthetic liver function, is released by the degradation of HSA hydrogels 

which may make albumin ELISAs (enzyme-linked immunosorbent assays) difficult to 

interpret, particularly in animal models. In regenerative neurology, studies to determine if 

HSA hydrogels enhance proliferation, differentiation and branching of hiPSC-NSC are 

needed since these were previously reported in BSA.  
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In summary, apart from drug delivery, albumin hydrogels hold great potential as a 

biomaterial for 3D cell culture, platform for cell delivery and scaffold for tissue 

transplantation. The inertness, poor immunogenicity, biodegradability, cost and possibility to 

derive patient specific albumin make albumin hydrogels useful in regenerative medicine and 

tissue engineering. However, these have not been fully exploited and better methods of 

synthesising and functionalising albumin hydrogels are needed.
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Figure 1 - (A) Ribbon diagrams showing the partial denaturation of N-form to F-form 

albumin, protein aggregation and hydrogel formation. Inverted vial shows a transparent pH-

induced BSA hydrogel (PBSA) next to a tubular PBSA cylinder made in mold at 37 °C. 

Cryo-SEM images of freeze-fractured hydrogels formed at pH 3.5 at 37 °C (B) and by 

thermally-induced gelation at 80 °C (C) illustrating differences in porosity. (D) Hydrogel 

turbidity of thermally-induced BSA hydrogels increases with BSA concentration. Images (A), 
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(B) and (C) were reproduced with permission from Baler et al. (2014); 

https://pubs.acs.org/doi/abs/10.1021%2Facs.accounts.5b00438. Further permissions related to 

the material excerpted should be directed to the ACS. Image (D) was reproduced with 

permission from Amdursky et al. (2018).

Figure 2 - Phase diagram of (A) human serum albumin (HSA) and (B) bovine serum albumin 

(BSA) after 48 hours of heating, at different concentrations and at neutral pH. (C) Phase 

diagram for 20% w/v HSA solution at varying pH values and heating times. Gels at high pH 

values (pH > 10.6) form in less than 2 hours at room temperature. (D) Phase diagram for 20% 

w/v BSA solution at varying pH values and heating times. Image reproduced with permission 

from Arabi et al. (2018). 

Figure 3 - (A) Isolation of neonatal rat ventricular cardiomyoscites. (B) BSA-hydrogel 

construct had folded spontaneously at Day 14 to create a 3D environment. (C) No differences 

in cardiomyocytes function (beats/minute) were noticed at Day 7 and Day 14 (p > 0.05). 

Good cell survival was demonstrated over 2 weeks by (D) Live/Dead staining and (E) 

Picogreen double stranded DNA quantification. Image reproduced with permission from 

Amdursky et al. (2018). 

Figure 4 - Cross-sections of epidermal tissue at the site of transplantation of HSA-PEG 

hydrogels demonstrated no evidence of inflammation or apoptosis; TUNEL negative. 

(TUNEL = Terminal deoxynucleotidyl transferase dUTP Nick-End Labelling, an assay for 

apoptosis). Image reproduced with permission from Kim et al. (2015). 
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Table 1: Summary of Albumin-Based Hydrogel Properties

Method of gelation vs 
properties

pH-induced
albumin hydrogels

Thermally-induced
albumin hydrogels

Chemically crosslinked
albumin hydrogels References

Structure of albumin

pH < 2.3:  E form (extended) 
pH 2.3-4.2: F form (fast migrating)
pH 4.3-8: N form (normal)
pH 8-10: B form (basic)
pH > 10: A form (aged)

Variable: heat causes a range of changes 
from monomeric structural differences such 
as unfolding and disruption of secondary 
structure, dimerisation, oligomerisation and 
polymerisation.

Dependent on crosslinking process and 
materials.

Amiri et al., 2010; Barone et al., 1995; 
Chen et al., 2019; Leggio et al., 2008; 
Molodenskiy et al., 2017

Mechanical Properties

Young's modulus

Storage G´ and Loss
Modulus G´´

Tensile Strength

~46 kPa for 20 wt% BSA hydrogel, 
measured using indentation (Baler et 
al., 2014)

G´ & G´´: ~5-10 and ~60-80 kPa 
respectively for 16 and 20 wt% BSA 
hydrogels after 2300 and 340 s (Baler 
et al., 2014)

Not reported.

~34 and ~67 kPa (pH 3.5) respectively for 
17 and 20 wt% BSA hydrogels, measured 
using indentation (Baler et al., 2014)

5-17 kPa for 3-9 wt% BSA hydrogels, 
measured under tension. Under confined 
compression, the values varied from ~0.2-
4.4 kPa for 3-9 wt% BSA hydrogels 
(Amdursky et al., 2018).

G´ & G´´:~120 and ~60 kPa respectively 
for both 16 and 20 wt% BSA hydrogels 
(80ºC, after 30-50 s) (Baler et al., 2014)

G´: 3-5 and 8-13 kPa respectively for 4.5 
and 9 wt% BSA hydrogels. G´´: 0.7-1.5 
and 2-4 kPa respectively for 4.5 and 9 wt% 
BSA hydrogels (0.1-10 Hz) (Amdursky et 
al., 2018)

~2-5 MPa for 3-9 wt% BSA hydrogels
(Amdursky et al., 2018)

Not reported

Not reported

~40 MPa for 10 wt% HSA hydrogel (Zhou 
et al., 2018)

Amdursky et al., 2018; Baler et al., 2014; 
Zhou et al., 2018

Hydrogel Turbidity Clear to translucent.

Translucent to opaque (white).
Highly dependent of ionic content, type of 
albumin e.g. BSA vs HSA, and albumin 
concentration.

Clear to opaque; dependent on crosslinking 
process and materials.

Amdursky et al., 2018; Arabi et al., 2018; 
Baler et al., 2014; Murata et al., 1993
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Biocompatibility

Cells cannot survive in the bulk of a 
strongly acidic or alkali hydrogel 
unless it is leached.

Once leached, cells can be seeded on 
the surface or within pores of the 
hydrogel.

Cells cannot survive the thermal gelation 
process.

Once gelled, hydrogels are biocompatible 
but cell attachment is often poor. 
Functionalisation of surfaces can be 
explored.

Almost all studies report good 
biocompatibility (cell survival and growth). Baler et al., 2014; Hirose et al., 2010

Biodegradability
(duration) Rapid: 1 day to 1 month Long: > 1 month Variable: 2 weeks to > 1 month

Baler et al., 2014; Feldman & McCauley, 
2018; Gallego et al., 2010; Kim et al., 
2015; Raja et al., 2015

Immunogenicity Low Low to moderate - fibrous capsule round 
transplanted scaffolds

Low to high: dependent on crosslinking 
process and materials. E.g.
With glutaraldehyde, a fibrous capsule 
around transplanted scaffold and evidence 
of local inflammation were noted.
With PEG and species-specific albumin, 
the above complications were absent. 

Amdursky et al., 2018; Baler et al., 2014; 
Feldman & McCauley, 2018; Gallego et al., 
2010; Kim et al., 2015; Ma et al., 2016; 
Raja et al., 2015

Printability

Difficult: low and high pH albumin 
solutions are very viscous. Maybe 
problematic at high resolution and 
high pressures may be needed.

Possible: high heat required to induce 
gelation of printed construct

Possible: allows new gelation methods e.g. 
gelation by photo-crosslinking of PEGDA-
albumin conjugates.

No articles identified at time of review.

Current applications Cardiac tissue engineering Cardiac tissue engineering

Bone and cardiac tissue engineering, skin 
and wound healing, toxicology studies for 
liver disease models, stem cell derived 
nerve cells, drug delivery.

See main text.
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