10 research outputs found

    COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells ,

    Get PDF
    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation

    Israeli Identity on the Run: the Quest for a Non-National Position in Contemporary Israeli Literature

    No full text
    My essay discusses a new attempt in young Israeli novels to break out of the suffocation and stagnation of the dominant literary protagonist. The discussion revolves around Ilai Rowner’s recent novel, Deserter (2015), which suggests ‘desertion’ as an option of to overcome nationalized structures of the self and of break new ground for its existence. The protagonist’s escape and a quest for a non-national position are destined to failure, however, reflecting the current state of political consciousness among young Israeli authors, and, I argue, the unthinkability of political exile in contemporary Israeli novels. The discussion presented here follows the renewed interest in Hanna Arendt’s exemplary essay “We Refugees” (1943) in light of the current refugees’ crisis in Europe among scholars such as Giorgio Agamben, Amal Jamal and Itamar Mann. While Agamben develops a phenomenology of being-a-refugee, severing the bond between nation and territory, his work lacks an experiential account of being a refugee. In light of this absence, I argue that Rowner’s protagonist remains blind to the particular identities he encounters, actively erasing the profound differences between deserters and refugees, persecutors and persecuted. While he recognizes the haunted element in him, Rowners’ protagonist’s obliviousness to the specific experiential trappings of his own story effectively sterilizes the novel’s political acuity through the effort to adopt an all-human perspective

    The yjdF

    No full text

    Genome-wide discovery of structured noncoding RNAs in bacteria

    No full text
    Abstract Background Structured noncoding RNAs (ncRNAs) play essential roles in many biological processes such as gene regulation, signaling, RNA processing, and protein synthesis. Among the most common groups of ncRNAs in bacteria are riboswitches. These cis-regulatory, metabolite-binding RNAs are present in many species where they regulate various metabolic and signaling pathways. Collectively, there are likely to be hundreds of novel riboswitch classes that remain hidden in the bacterial genomes that have already been sequenced, and potentially thousands of classes distributed among various other species in the biosphere. The vast majority of these undiscovered classes are proposed to be exceedingly rare, and so current bioinformatics search techniques are reaching their limits for differentiating between true riboswitch candidates and false positives. Results Herein, we exploit a computational search pipeline that can efficiently identify intergenic regions most likely to encode structured ncRNAs. Application of this method to five bacterial genomes yielded nearly 70 novel genetic elements including 30 novel candidate ncRNA motifs. Among the riboswitch candidates identified is an RNA motif involved in the regulation of thiamin biosynthesis. Conclusions Analysis of other genomes will undoubtedly lead to the discovery of many additional novel structured ncRNAs, and provide insight into the range of riboswitches and other kinds of ncRNAs remaining to be discovered in bacteria and archaea

    Nuclear spin effects in biological processes

    No full text
    Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions

    Challenges of ligand identification for the second wave of orphan riboswitch candidates

    No full text
    <p>Orphan riboswitch candidates are noncoding RNA motifs whose representatives are believed to function as genetic regulatory elements, but whose target ligands have yet to be identified. The study of certain orphans, particularly classes that have resisted experimental validation for many years, has led to the discovery of important biological pathways and processes once their ligands were identified. Previously, we highlighted details for four of the most common and intriguing orphan riboswitch candidates. This facilitated the validation of riboswitches for the signaling molecules c-di-AMP, ZTP, and ppGpp, the metal ion Mn<sup>2+</sup>, and the metabolites guanidine and PRPP. Such studies also yield useful linkages between the ligands sensed by the riboswitches and numerous biochemical pathways. In the current report, we describe the known characteristics of 30 distinct classes of orphan riboswitch candidates – some of which have remained unsolved for over a decade. We also discuss the prospects for uncovering novel biological insights via focused studies on these RNAs. Lastly, we make recommendations for experimental objectives along the path to finding ligands for these mysterious RNAs.</p
    corecore