102 research outputs found
Dunhuang murals contour generation network based on convolution and self-attention fusion
Dunhuang murals are a collection of Chinese style and national style, forming
a self-contained Chinese-style Buddhist art. It has very high historical and
cultural value and research significance. Among them, the lines of Dunhuang
murals are highly general and expressive. It reflects the character's
distinctive character and complex inner emotions. Therefore, the outline
drawing of murals is of great significance to the research of Dunhuang Culture.
The contour generation of Dunhuang murals belongs to image edge detection,
which is an important branch of computer vision, aims to extract salient
contour information in images. Although convolution-based deep learning
networks have achieved good results in image edge extraction by exploring the
contextual and semantic features of images. However, with the enlargement of
the receptive field, some local detail information is lost. This makes it
impossible for them to generate reasonable outline drawings of murals. In this
paper, we propose a novel edge detector based on self-attention combined with
convolution to generate line drawings of Dunhuang murals. Compared with
existing edge detection methods, firstly, a new residual self-attention and
convolution mixed module (Ramix) is proposed to fuse local and global features
in feature maps. Secondly, a novel densely connected backbone extraction
network is designed to efficiently propagate rich edge feature information from
shallow layers into deep layers. Compared with existing methods, it is shown on
different public datasets that our method is able to generate sharper and
richer edge maps. In addition, testing on the Dunhuang mural dataset shows that
our method can achieve very competitive performance
An advanced YOLOv3 method for small object detection
Small object detection is a very challenging task in the field of object
detection because it is easily affected by large object occlusion and small
object itself has relatively little feature information. Aiming at the problem
that the YOLOv3 network does not consider the context semantic relationship of
small object detection, the detection accuracy of small objects is not high. In
this paper, we propose a small object detection network combining multi-level
fusion and feature augmentation. First, the feature enhancement module is
introduced into the deep layer of the backbone extraction network to enhance
the feature information of small objects in the feature map. Second, a
multi-level feature fusion module is proposed to better capture the contextual
semantic relationship of small objects. In addition, the strategy of combining
Soft-NMS and CIOU is used to solve the problem of missed detection of occluded
small objects. At last, The ablation experiment of the MS COCO2017 object
detection task proves the effectiveness of several modules introduced in this
paper for small object detection. The experimental results on the MS COCO2017,
VOC2007, and VOC2012 datasets show that the AP of this method is 16.5%, 8.71%,
and 9.68% higher than that of YOLOv3, respectively. All experiments show that
the method proposed in this paper has better detection performance for small
object detection
Long-term antagonistic effect of increased precipitation and nitrogen addition on soil respiration in a semiarid steppe
Changes in water and nitrogen (N) availability due to climate change and atmospheric N deposition could have significant effects on soil respiration, a major pathway of carbon (C) loss from terrestrial ecosystems. A manipulative experiment simulating increased precipitation and atmospheric N deposition has been conducted for 9 years (2005–2013) in a semiarid grassland in Mongolian Plateau, China. Increased precipitation and N addition interactively affect soil respiration through the 9 years. The interactions demonstrated that N addition weakened the precipitation-induced stimulation of soil respiration, whereas increased precipitation exacerbated the negative impacts of N addition. The main effects of increased precipitation and N addition treatment on soil respiration were 15.8% stimulated and 14.2% suppressed, respectively. Moreover, a declining pattern and 2-year oscillation were observed for soil respiration response to N addition under increased precipitation. The dependence of soil respiration upon gross primary productivity and soil moisture, but not soil temperature, suggests that resources C substrate supply and water availability are more important than temperature in regulating interannual variations of soil C release in semiarid grassland ecosystems. The findings indicate that atmospheric N deposition may have the potential to mitigate soil C loss induced by increased precipitation, and highlight that long-term and multi-factor global change studies are critical for predicting the general patterns of terrestrial C cycling in response to global change in the future
Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury
Synaptic dysfunction and degeneration is an early pathological feature of aging and age-related diseases, including Alzheimer's disease (AD). Aging is associated with increased generation and deposition of advanced glycation endproducts (AGEs), resulting from nonenzymatic glycation (or oxidation) proteins and lipids. AGE formation is accelerated in diabetes and AD-affected brain, contributing to cellular perturbation. The extent of AGEs' involvement, if at all, in alterations in synaptic structure and function is currently unknown. Here we analyze the contribution of neuronal receptor of AGEs (RAGE) signaling to AGE-mediated synaptic injury using novel transgenic neuronal RAGE knockout mice specifically targeted to the forebrain and transgenic mice expressing neuronal dominant-negative RAGE (DN-RAGE). Addition of AGEs to brain slices impaired hippocampal long-term potentiation (LTP). Similarly, treatment of hippocampal neurons with AGEs significantly decreases synaptic density. Such detrimental effects are largely reversed by genetic RAGE depletion. Notably, brain slices from mice with neuronal RAGE deficiency or DN-RAGE are resistant to AGE-induced LTP deficit. Further, RAGE deficiency or DN-RAGE blocks AGE-induced activation of p38 signaling. Taken together, these data show that neuronal RAGE functions as a signal transducer for AGE-induced synaptic dysfunction, thereby providing new insights into a mechanism by which the AGEs–RAGE-dependent signaling cascade contributes to synaptic injury via the p38 MAP kinase signal transduction pathway. Thus, RAGE blockade may be a target for development of interventions aimed at preventing the progression of cognitive decline in aging and age-related neurodegenerative diseases
Patterns and Distributions of Urban Expansion in Global Watersheds
Abstract Understanding urban expansion at the watershed scale is important because watersheds are important carriers of ecological and environmental impacts. However, current analyses are mainly restricted to administrative units only. Here, we used a long‐term multitemporal data set of urban land to quantify the spatiotemporal trends in the extent and form of urban expansion from 1992 to 2016 in endorheic and exoreic watersheds, globally. Overall, urban expansion in 70% of watersheds (154/220) showed a decelerating trend. The average urban expansion speed of these watersheds in the last 6 years was approximately half of that in the last 24 years. Urban expansion speed in endorheic watersheds lagged behind the counterparts in exoreic watersheds, with the former approximately 1/4 of the latter. More importantly, the pattern of urban expansion in endorheic watersheds was following the low‐density and sprawling trend in exoreic watersheds, which could exert far‐reaching impacts on the sustainability of endorheic watersheds located in arid lands. These findings suggest the need to look beyond administrative city boundaries for land use planning and policies in the context of watershed management
Decreased Proteolytic Activity of the Mitochondrial Amyloid-β Degrading Enzyme, PreP Peptidasome, in Alzheimer's Disease Brain Mitochondria
This is the published version. Copyright 2011 by Journal of Alzheimer's Disease.Accumulation of amyloid-β peptide (Aβ), the neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aβ in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aβ-degrading enzyme. In the present study, we examined PreP activity in the mitochondrial matrix of the human brain's temporal lobe, an area of the brain highly susceptible to Aβ accumulation and reactive oxygen species (ROS) production. We found significantly lower hPreP activity in AD brains compared with non-AD age-matched controls. By contrast, in the cerebellum, a brain region typically spared from Aβ accumulation, there was no significant difference in hPreP activity when comparing AD samples to non-AD controls. We also found significantly reduced PreP activity in the mitochondrial matrix of AD transgenic mouse brains (Tg mAβPP and Tg mAβPP/ABAD) when compared to non-transgenic aged-matched mice. Furthermore, mitochondrial fractions isolated from AD brains and Tg mAβPP mice had higher levels of 4-hydroxynonenal, an oxidative product, as compared with those from non-AD and nonTg mice. Accordingly, activity of cytochrome c oxidase was significantly reduced in the AD mitochondria. These findings suggest that decreased PreP proteolytic activity, possibly due to enhanced ROS production, contributes to Aβ accumulation in mitochondria leading to the mitochondrial toxicity and neuronal death that is exacerbated in AD. Clearance of mitochondrial Aβ by PreP may thus be of importance in the pathology of AD
The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland
BACKGROUND: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. CONCLUSIONS/SIGNIFICANCE: These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands
Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem
The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change
- …