95 research outputs found
Adaptive Model Pruning for Hierarchical Wireless Federated Learning
Federated Learning (FL) is a promising privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets. Hierarchical FL (HFL), as a device-edge-cloud aggregation hierarchy, can enjoy both the cloud server's access to more datasets and the edge servers' efficient communications with devices. However, the learning latency increases with the HFL network scale due to the increasing number of edge servers and devices with limited local computation capability and communication bandwidth. To address this issue, in this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale. We present the convergence rate of an upper on the l2-norm of gradients for HFL with model pruning, analyze the computation and communication latency of the proposed model pruning scheme, and formulate an optimization problem to maximize the convergence rate under a given latency threshold by jointly optimizing the pruning ratio and wireless resource allocation. By decoupling the optimization problem and using Karush-Kuhn-Tucker (KKT) conditions, closed-form solutions of pruning ratio and wireless resource allocation are derived. Simulation results show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50% communication cost.</p
Corrosion of Q235 Carbon Steel in Seawater Containing Mariprofundus ferrooxydans and Thalassospira sp.
Iron-oxidizing bacteria (IOB) and iron-reducing bacteria (IRB) can easily adhere onto carbon steel surface to form biofilm and affect corrosion processes. However, the mechanism of mixed consortium induced carbon steel corrosion is relatively underexplored. In this paper, the adsorptions of IOB (Mariprofundus ferrooxydans, M. f.), IRB (Thalassospira sp., T. sp.) and mixed consortium (M. f. and T. sp.) on surface of Q235 carbon steel and their effects on corrosion in seawater were investigated through surface analysis techniques and electrochemical methods. Results showed that local adhesion is a typical characteristic for biofilm on surface of Q235 carbon steel in M. f. and mixed consortium media, which induces localized corrosion of Q235 carbon steel. Corrosion rates of Q235 carbon steel in different culture media decrease in the order: rM.f. > rmixed consortium > rT.sp. > rsterile. The evolution of corrosion rate along with time decreases in M. f. medium, and increases then keeps table in both T. sp. and mixed consortium media. Corrosion mechanism of Q235 carbon steel in mixed consortium medium is discussed through analysis of surface morphology and composition, environmental parameter, and electrochemical behavior
Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles
Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites) modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM) technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite) have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics
Recommended from our members
Effects of the terms associated with phi(zz) in free surface condition on the attitudes and resistance of different ships
One of approaches for numerical simulation of a ship moving in a still water is based on the composition of double-body flow and wavy flow solved by a boundary element method. There are several terms related to the second order derivative (Ï•zz) of double-body flow velocity potential with respect to the vertical coordinate in the free surface conditions. Understanding of the effects of the terms is very limited so far. In many cases, they are just ignored even for ships with a high forward speed, particularly in the cases associated with multihull ships, for which no investigations on their effects have been found. This paper will present a study on the effects of the terms on the numerical prediction of the attitudes and resistance of different ships in various situations, including monohull, catamaran and trimaran with different parameters and at different Froude numbers. The results will demonstrate that the effects of the terms are significant in many cases and that considering this term may lead to the results similar to those obtained by fully nonlinear models at high Froude numbers
Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS
Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS
Charge transport through single-molecule bilayer-graphene junctions with atomic thickness
The van der Waals interactions (vdW) between the π-conjugated molecules offer new opportunities for fabricating the heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. Experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through the molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale
Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke
Importance
It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy.
Objective
To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO.
Design, Setting, and Participants
This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy.
Main Outcomes and Measures
The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours.
Results
Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo.
Conclusions and Relevance
Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172
Research on the Pricing of Global Drought Catastrophe Bonds
The rapid development of catastrophe bonds provides a new idea for catastrophe risk dispersion, since its traditional means fail to afford the economic losses caused by the global drought catastrophe. With the deepening of the concept of the community with a shared future for mankind, there is an opportunity to issue global drought catastrophe bonds through international cooperation. Based on the data of global drought catastrophe losses from 1900 to 2018, this paper selects 21 countries as the primary participants of international cooperation and studies the pricing of drought catastrophe bonds by the POT model and high quantile estimation. The results show that the first-class bond has a 10% occurrence probability with the trigger point of 117.13 million. In line with high quartile estimates, the one-year principal-protected catastrophe bonds with a face value of 957.14 and 912.50 and 867.86 and $626.79, respectively
Analysis of the Stability of the Double-Hole Complementary Ventilation and Ventilation Network of the Tunnel Constructed by Drilling and Blasting Method
Currently, double-hole complementary ventilation is a mature ventilation method for operating tunnels, but how to carry out it in the construction tunnel poses a new challenge. Due to the desynchronization in the construction period of the double-hole tunnel, there is an instantaneous difference in the air flow demand between the two working faces. The study analyzes the impact of geometric parameters, specifically Lt (the distance from the traffic cross passage to the working face of the advance side tunnel), Lp (the distance between the pedestrian cross passage and the working face of the advance side tunnel), Ht (height of the upper step), and Lw (safe step distance of the double-hole working face) on ventilation network stability. The results show that with the increase of Lt and Lp, the Rm resistance of each branch changes non-uniformly, and the stability of the ventilation network is significantly different. Then, when Lt, Lp = 80 and 180 m, the air flow directions of the double-hole tunnel are the same. Finally, when Lt and Lp = 130 m, the air flow directions are inconsistent, which indicates that in the range of 80 m Lt or Lp Ht Lw < 50 m, the stability of the ventilation network is not affected, and the flow field of the double-holes does not interfere with each other. The conclusions obtained confirm that the double-hole complementary ventilation method is available in construction tunnels, and has potential for implementation
- …