36 research outputs found

    Dynamic Changes in Ultrastructure of the Primary Cilium in Migrating Neuroblasts in the Postnatal Brain

    Get PDF
    New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain

    Additive Effects of L-Ornithine on Preferences to Basic Taste Solutions in Mice

    No full text
    In addition to the taste receptors corresponding to the six basic taste qualities—sweet, salty, sour, bitter, umami, and fatty—another type of taste receptor, calcium-sensing receptor (CaSR), is found in taste-bud cells. CaSR is called the ‘kokumi’ receptor because its agonists increase sweet, salty and umami tastes to induce ‘koku’, a Japanese word meaning the enhancement of flavor characters such as thickness, mouthfulness, and continuity. Koku is an important factor for enhancing food palatability. However, it is not well known whether other kokumi-receptors and substances exist. Here, we show that ornithine (L-ornithine but not D-ornithine) at low concentrations that do not elicit a taste of its own, enhances preferences to sweet, salty, umami, and fat taste solutions in mice. Increased preference to monosodium glutamate (MSG) was the most dominant effect. Antagonists of G-protein-coupled receptor family C group 6 subtype A (GPRC6A) abolished the additive effect of ornithine on MSG solutions. The additive effects of ornithine on taste stimuli are thought to occur in the oral cavity, and are not considered post-oral events because ornithine’s effects were confirmed in a brief-exposure test. Moreover, the additive effects of ornithine and the action of the antagonist were verified in electrophysiological taste nerve responses. Immunohistochemical analysis implied that GPRC6A was expressed in subsets of type II and type III taste cells of mouse circumvallate papillae. These results are in good agreement with those reported for taste modulation involving CaSR and its agonists. The present study suggests that ornithine is a kokumi substance and GPRC6A is a newly identified kokumi receptor

    Icilin Activates the ÎŽ-Subunit of the Human Epithelial Na +

    No full text

    Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors

    No full text
    Many painful inflammatory and ischemic conditions such as rheumatoid arthritis, cardiac ischemia, and exhausted skeletal muscles are accompanied by local tissue acidosis. In such acidotic states, extracellular protons provoke the pain by opening cation channels in nociceptors. It is generally believed that a vanilloid receptor subtype-1 (VR1) and an acid-sensing ion channel (ASIC) mediate the greater part of acid-induced nociception in mammals. Here we provide evidence for the involvement of both channels in acid-evoked pain in humans and show their relative contributions to the nociception. In our psychophysical experiments, direct infusion of acidic solutions (pH ≄ 6.0) into human skin caused localized pain, which was blocked by amiloride, an inhibitor of ASICs, but not by capsazepine, an inhibitor of VR1. Under more severe acidification (pH 5.0) amiloride was less effective in reducing acid-evoked pain. In addition, capsazepine had a partial blocking effect under these conditions. Amiloride itself neither blocked capsaicin-evoked localized pain in human skin nor inhibited proton-induced currents in VR1-expressing Xenopus oocytes. Our results suggest that ASICs are leading acid sensors in human nociceptors and that VR1 participates in the nociception mainly under extremely acidic conditions

    Expression and Regulation of Cav3.2 T-Type Calcium Channels during Inflammatory Hyperalgesia in Mouse Dorsal Root Ganglion Neurons.

    No full text
    The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 Όm2 in cross-sectional area and 20 to 30 Όm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state

    Acidification effects on isolation of extracellular vesicles from bovine milk.

    No full text
    Bovine milk extracellular vesicles (EVs) attract research interest as carriers of biologically active cargo including miRNA from donor to recipient cells to facilitate intercellular communication. Since toxicity of edible milk seems to be negligible, milk EVs are applicable to use for therapeutics in human medicine. Casein separation is an important step in obtaining pure EVs from milk, and recent studies reported that adding hydrochloric acid (HCl) and acetic acid (AA) to milk accelerates casein aggregation and precipitation to facilitate EV isolation and purification; however, the effects of acidification on EVs remain unclear. In this study, we evaluated the acidification effects on milk-derived EVs with that by standard ultracentrifugation (UC). We separated casein from milk by either UC method or treatment with HCl or AA, followed by evaluation of EVs in milk serum (whey) by transmission electron microcopy (TEM), spectrophotometry, and tunable resistive pulse sensing analysis to determine EVs morphology, protein concentration, and EVs size and concentration, respectively. Moreover, we used anti-CD9, -CD63, -CD81, -MFG-E8, -HSP70, and -Alix antibodies for the detection of EVs surface and internal marker proteins by western blot (WB). Morphological features of EVs were spherical shape and similar structure was observed in isolated EVs by TEM. However, some of the EVs isolated by HCl and AA had shown rough surface. Although protein concentration was higher in whey obtained by UC, EV concentration was significantly higher in whey following acid treatment. Moreover, although all of the targeted EVs-marker-proteins were detected by WB, HCl- or AA-treatments partially degraded CD9 and CD81. These findings indicated that acid treatment successfully separated casein from milk to allow efficient EV isolation and purification but resulted in partial degradation of EV-surface proteins. Our results suggest that following acid treatment, appropriate EV-surface-marker antibodies should be used for accurate assess the obtained EVs for downstream applications. This study describes the acidification effects on EVs isolated from bovine milk for the first time
    corecore