48 research outputs found

    Position space formulation for Dirac fermions on honeycomb lattice

    Get PDF
    We study how to construct Dirac fermion defined on the honeycomb lattice in position space. Starting from the nearest neighbor interaction in tight binding model, we show that the Hamiltonian is constructed by kinetic term and second derivative term of three flavor Dirac fermions in which one flavor has a mass of cutoff order and the other flavors are massless. In this formulation the structure of the Dirac point is simplified so that its uniqueness can be easily shown even if we consider the next-nearest neighbor interaction. We also show the chiral symmetry at finite lattice spacing, which protects the masslessness of the Dirac fermion, and discuss the analogy with the staggered fermion formulation.Comment: 19 pages, 7 figure

    Lattice study of infrared behaviour in SU(3) gauge theory with twelve massless flavours

    Get PDF
    We present details of a lattice study of infrared behaviour in SU(3) gauge theory with twelve massless fermions in the fundamental representation. Using the step-scaling method, we compute the coupling constant in this theory over a large range of scale. The renormalisation scheme in this work is defined by the ratio of Polyakov loops in the directions with different boundary conditions. We closely examine systematic effects, and find that they are dominated by errors arising from the continuum extrapolation. Our investigation suggests that SU(3) gauge theory with twelve flavours contains an infrared fixed point.Comment: 29 pages, 15 figures, 4 tables. Minor revision. Published versio
    corecore